Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: BLQ: PLs in XL VLDL


BLQ: PLs in XL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.669[0.660, 0.678]2.4x10-279
white BritishGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.649[0.640, 0.658]1.0x10-213
white BritishGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.664[0.655, 0.673]1.5x10-258
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.637[0.628, 0.646]3.9x10-182
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.671[0.662, 0.680]2.9x10-285
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.672[0.663, 0.681]5.3x10-287
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.718[0.710, 0.727]<1.0x10-300
Non-British whiteCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.716[0.679, 0.754]8.8x10-22
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.641[0.601, 0.681]1.6x10-11
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.649[0.610, 0.688]3.2x10-12
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.611[0.571, 0.652]4.3x10-08
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.718[0.681, 0.755]5.1x10-22
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.718[0.681, 0.755]4.4x10-22
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.748[0.713, 0.784]9.4x10-27
South AsianCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.641[0.565, 0.717]6.5x10-04
South AsianGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.652[0.572, 0.733]3.2x10-04
South AsianGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.665[0.583, 0.747]1.1x10-04
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.620[0.541, 0.699]2.4x10-03
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.641[0.565, 0.717]6.6x10-04
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.642[0.566, 0.718]6.4x10-04
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.676[0.595, 0.757]8.9x10-06
AfricanCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.623[0.576, 0.669]6.2x10-07
AfricanGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.566[0.518, 0.614]5.9x10-03
AfricanGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.586[0.539, 0.634]4.0x10-04
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.586[0.539, 0.634]7.7x10-04
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.621[0.575, 0.668]7.6x10-07
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.622[0.575, 0.668]7.2x10-07
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.645[0.599, 0.690]4.4x10-09
OthersCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.692[0.668, 0.716]4.6x10-51
OthersGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.609[0.584, 0.634]3.5x10-17
OthersGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.625[0.600, 0.649]5.8x10-22
OthersGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.620[0.595, 0.645]2.3x10-20
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.692[0.669, 0.716]1.2x10-49
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.693[0.669, 0.717]8.2x10-50
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.716[0.693, 0.739]1.3x10-60

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/BIN_FC10023790/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 4450 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61609611376:160961137:T:Crs3798220CPAVsLPA0.29602669576605
1111664891711:116648917:G:Crs964184CUTRZPR10.276411847829206
8198135298:19813529:A:Grs268GPAVsLPL-0.238350944579205
61610101186:161010118:A:Grs10455872GIntronicLPA0.224245991018566
8198197248:19819724:C:Grs328GPTVsLPL0.214456114701499
19842932319:8429323:G:Ars116843064APAVsANGPTL40.197707394230757
1111669229311:116692293:C:Ars12721043APAVsAPOA40.17600609656331
2277309402:27730940:T:Crs1260326CPAVsGCKR0.119750585369264
2212315242:21231524:G:Ars676210APAVsAPOB0.117603637769793
165699332416:56993324:C:Ars3764261AOthersCETP0.109196872475777
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B20.0967499627403518
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.0948442508906315
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0893598465802604
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.0886446139364578
165700659016:57006590:C:Trs7499892TIntronicCETP-0.0800314535062089
194541445119:45414451:T:Crs439401COthersAPOC1-0.0748281243473014
8198246678:19824667:C:Trs15285TUTRLPL0.0696416024970119
1629400971:62940097:G:Ars1979722AIntronicDOCK70.0662598937353188
125784371112:57843711:G:Ars2229357APAVsINHBC0.0612806353924907
12302976591:230297659:C:Trs2281719TIntronicGALNT20.0494171314836146
5558608665:55860866:G:Trs3936510TIntronic-0.0493345354039413
1212442730612:124427306:T:Ars11057401APAVsCCDC920.0481086822906534
7730328357:73032835:T:Crs7785479CIntronicMLXIPL0.0480706009592538
8198194398:19819439:A:Grs326GIntronicLPL0.046260965007164
5558618945:55861894:G:Ars9687846AIntronic-0.0457709248667348
165699071616:56990716:C:Ars247617AOthers0.0444535904041611
191120230619:11202306:G:Trs6511720TIntronicLDLR0.0443331111727999
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0412440814687834
81265073898:126507389:C:Ars2954038AIntronic0.0411328231219585
116157976011:61579760:T:Crs174555CIntronicFADS1, FADS2-0.040832127865433
204453465120:44534651:G:Ars6065904AIntronicPLTP-0.0402383430505948
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P-0.0397190901215233
1630455061:63045506:A:Crs1748201CIntronicDOCK7-0.0385657439526716
2212639002:21263900:G:Ars1367117APAVsAPOB-0.0380550933345229
134089500613:40895006:A:Crs4943767COthers0.0378716745130854
1111666240711:116662407:G:Crs3135506CPAVsAPOA5-0.0376780137738322
61605608456:160560845:A:Grs628031GPAVsSLC22A10.0373880725321275
165701509116:57015091:G:Crs5880CPAVsCETP-0.0367788931113017
81264882508:126488250:C:Trs2980869TIntronic0.0358154291282034
1111665756111:116657561:C:Trs3741298TIntronicZPR10.034433204320342
434460914:3446091:G:Trs3748034TPAVsHGFAC-0.0340268728928676
1272785731:27278573:T:Crs17360994CPAVsKDF1-0.0337205541898557
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC10.0336131783922714
194539526619:45395266:G:Ars157580AIntronicTOMM40-0.0332635843364449
5557991845:55799184:C:Ars157843AOthers-0.0328549136004319
71304382147:130438214:G:Ars13234407AOthers0.0322371360545169
61274811546:127481154:A:Crs4644087CIntronicRSPO3-0.0322221076285885
1111666370711:116663707:G:Ars662799AOthersAPOA50.0321964299641813
81166119028:116611902:T:Crs2737206CIntronicTRPS10.0321450106742903
1397970551:39797055:A:Grs16826069GPAVsMACF1-0.0316404768141595
3121120103:12112010:G:Ars598747AOthersACTG1P120.0316101051752433
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0315855188401907
6535036936:53503693:A:Crs6901463COthers-0.0310612852235079
51563902975:156390297:T:Crs6882076COthersTIMD4-0.0309966226550537
152944972915:29449729:A:Grs4420502GIntronicENTREP2-0.0307184565831677
167214417416:72144174:T:Crs9302635CIntronicDHX380.0306584813299663
632424101HLA-DRB3*0301HLA-DRB3*0301+PAVsHLA-DRB3-0.0302127503220974
81264817478:126481747:A:Grs2980875GIntronic0.0301803212805962
182112044418:21120444:T:Crs1805082CPAVsNPC10.029923804564431
22271014112:227101411:A:Grs2972144GOthers-0.029880810295033
61398317576:139831757:T:Crs634869COthers0.0297574565582797
22195453092:219545309:T:Crs2303565CPAVsSTK360.0287026072567981
2212252812:21225281:C:Trs1042034TPAVsAPOB-0.0284538632150028
5746565395:74656539:T:Crs12916CUTRHMGCR-0.0284507627802624
390911513:9091151:C:Grs610457GPAVsSRGAP3-0.0280834491500336
1111895217311:118952173:A:Grs15818GPAVsVPS11-0.0279419288858234
8199414488:19941448:C:Trs6989064TIntronic0.0278702711401597
61119014536:111901453:G:Trs1043730TPAVsTRAF3IP2-0.0275202884705934
12303241191:230324119:G:Ars627702AIntronicGALNT2-0.0272038866726817
156334562215:63345622:G:Ars7170462AIntronicTPM1-0.0270886522794529
194628938519:46289385:CCAGGGGG:Crs1424895136CPTVsDMWD0.0268351524843519
191127513919:11275139:A:Crs7188CUTRKANK2-0.0266137157025472
61610060776:161006077:C:Trs41272114TPTVsLPA-0.0262805197952175
4879967454:87996745:G:Ars17605615AIntronicAFF1-0.0261553341664391
19246629619:2466296:A:Grs10415191GOthers-0.025933881600386
1013297613210:132976132:G:Ars11591783AIntronicTCERG1L0.0259041326798708
7214963977:21496397:G:Trs6461563TIntronicSP4-0.0256272626877412
6327966856:32796685:A:Grs241448GPTVsTAP2-0.0255768456742605
122047375812:20473758:C:Ars7134375AOthers0.0252897047389017
81266453478:126645347:C:Ars10956254AOthers-0.0252781788518961
51568114435:156811443:G:Ars10063413APTVs-0.0250753159983641
137529493513:75294935:C:Trs1327748TOthers0.0247982326666634
109481905310:94819053:C:Trs8211TUTREXOC6-0.0246653474396941
1120441641:12044164:C:Trs1474868TIntronicMFN20.0246500981945764
1111663994111:116639941:A:Grs1263149GIntronicBUD130.024637654611762
51565895855:156589585:A:Grs31208GPAVsGARIN30.0243294506606973
114727025511:47270255:C:Trs2167079TPAVsACP20.0242494147869302
11772788611:7727886:C:Trs7927138TPAVsOVCH2-0.0241192524720837
7756150067:75615006:C:Trs1057868TPAVsPOR-0.0241136229891834
6720438976:72043897:A:Grs828630GIntronic0.0240955197942098
91191068819:119106881:C:Ars7020782APAVsPAPPA0.0240917988401511
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.0240521758546556
6437655336:43765533:A:Grs1885659GOthers-0.0239272971217686
1111726788411:117267884:A:Grs573455GPAVsCEP164-0.0236218753384797
174193137517:41931375:A:Grs12453522GPAVsCD300LG-0.0235337996364039
X38009121X:38009121:G:Ars35318931APAVsSRPX-0.0233991747312096
142071185214:20711852:C:Grs17277270GPAVsOR11H4-0.0231978689284456
185773627018:57736270:G:Ars1942867AOthers-0.0231782248394733
61303741026:130374102:C:Ars9388768APAVsL3MBTL3-0.0231740297332555
109530386210:95303862:T:Crs17483970COthers-0.0230843552515829

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 4450 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References