Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: BLQ: Free Chol. to Tot. Lipids in CMs and XXL VLDL %


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelBLQ (derived)AUROC0.627[0.620, 0.634]8.2x10-274
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.455[0.448, 0.462]6.3x10-36
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.441[0.434, 0.448]1.4x10-62
white BritishGenotype-only modelBLQ (derived)AUROC0.625[0.618, 0.632]1.6x10-249
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.570[0.563, 0.578]1.2x10-76
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.520[0.512, 0.527]5.3x10-06
white BritishFull model (covariates and genotypes)BLQ (derived)AUROC0.679[0.673, 0.686]<1.0x10-300
Non-British whiteCovariate-only modelBLQ (derived)AUROC0.661[0.629, 0.694]3.3x10-21
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.465[0.431, 0.499]2.8x10-02
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.440[0.407, 0.473]7.6x10-04
Non-British whiteGenotype-only modelBLQ (derived)AUROC0.621[0.590, 0.653]2.1x10-12
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.610[0.576, 0.644]8.7x10-10
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.547[0.512, 0.581]6.3x10-03
Non-British whiteFull model (covariates and genotypes)BLQ (derived)AUROC0.706[0.676, 0.737]1.4x10-30
South AsianCovariate-only modelBLQ (derived)AUROC0.577[0.519, 0.636]4.1x10-03
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.490[0.433, 0.548]5.5x10-01
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.483[0.424, 0.542]5.1x10-01
South AsianGenotype-only modelBLQ (derived)AUROC0.620[0.562, 0.677]1.5x10-05
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.557[0.500, 0.613]4.7x10-02
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.537[0.479, 0.595]2.2x10-01
South AsianFull model (covariates and genotypes)BLQ (derived)AUROC0.631[0.570, 0.691]1.0x10-06
AfricanCovariate-only modelBLQ (derived)AUROC0.560[0.513, 0.608]1.7x10-02
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.515[0.467, 0.562]3.9x10-01
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.507[0.460, 0.555]4.3x10-01
AfricanGenotype-only modelBLQ (derived)AUROC0.558[0.511, 0.606]4.2x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.558[0.510, 0.605]1.3x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.548[0.501, 0.595]3.3x10-02
AfricanFull model (covariates and genotypes)BLQ (derived)AUROC0.577[0.530, 0.623]1.8x10-03
OthersCovariate-only modelBLQ (derived)AUROC0.644[0.624, 0.663]1.4x10-44
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.467[0.447, 0.487]2.0x10-03
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.460[0.439, 0.480]1.4x10-04
OthersGenotype-only modelBLQ (derived)AUROC0.608[0.589, 0.628]1.4x10-24
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.603[0.583, 0.623]6.8x10-23
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.559[0.538, 0.580]1.1x10-08
OthersFull model (covariates and genotypes)BLQ (derived)AUROC0.678[0.660, 0.697]6.3x10-63

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/BIN_FC10023882/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 3467 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA0.279495011439935
61609611376:160961137:T:Crs3798220CPAVsLPA0.275715784976609
1111664891711:116648917:G:Crs964184CUTRZPR10.266767775654391
8198135298:19813529:A:Grs268GPAVsLPL-0.234876460026078
19842932319:8429323:G:Ars116843064APAVsANGPTL40.188504899492732
8198197248:19819724:C:Grs328GPTVsLPL0.166354247561386
194541564019:45415640:G:Ars445925AOthersAPOC1-0.16411825955621
2212315242:21231524:G:Ars676210APAVsAPOB0.150218216204076
2277309402:27730940:T:Crs1260326CPAVsGCKR0.128983132451773
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.0862653755767495
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.0742644626047083
165699332416:56993324:C:Ars3764261AOthersCETP0.0622158218229056
81264817478:126481747:A:Grs2980875GIntronic0.0612983884536613
194541445119:45414451:T:Crs439401COthersAPOC1-0.0606866214828376
61611070186:161107018:G:Ars9457997AOthers0.0557399063765274
8198246678:19824667:C:Trs15285TUTRLPL0.0518994785692127
5558618945:55861894:G:Ars9687846AIntronic-0.0516234833833827
81265073898:126507389:C:Ars2954038AIntronic0.0506043398571414
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.048641113816522
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.0485507611690498
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0461517326376348
1111665756111:116657561:C:Trs3741298TIntronicZPR10.0449860065104579
116157138211:61571382:G:Ars174549AUTRFADS1-0.0449799381835545
1631181961:63118196:A:Crs10889353CIntronicDOCK70.0432404201428561
204455401520:44554015:T:Crs6065906COthers-0.041791609193582
12302999491:230299949:T:Crs10779835CIntronicGALNT20.0388850276384633
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.0386861128538017
1111663394711:116633947:G:Ars10488698APAVsBUD130.0361356721579999
632631702HLA-DQB1*0201HLA-DQB1*0201+PAVsHLA-DQB10.0341425083776038
167214417416:72144174:T:Crs9302635CIntronicDHX380.0340151177635698
61610181746:161018174:C:Trs7770628TIntronicLPA-0.0328332138565
22271014112:227101411:A:Grs2972144GOthers-0.0327424556900464
8198194398:19819439:A:Grs326GIntronicLPL0.0323696314685231
204454504820:44545048:C:Trs4810479TOthersPLTP0.0315038120857439
8199430278:19943027:G:Ars13265868AIntronic0.0313722669139763
116160351011:61603510:C:Ars174576AIntronicFADS2-0.0311900638381119
51563960035:156396003:C:Trs12657266TOthers-0.0308439895505812
165701509116:57015091:G:Crs5880CPAVsCETP-0.0293408650677387
19720439419:7204394:T:Grs2042901GIntronicINSR0.0284522374112945
31359884123:135988412:G:Ars4678428AIntronicPCCB-0.0274466019106714
195748842319:57488423:C:Trs8102873TOthers-0.0267923434106455
71304333847:130433384:C:Trs4731702TOthers0.0267764590953825
19861558919:8615589:A:Grs4804311GPAVsMYO1F0.0263159402150494
1510191055015:101910550:G:Ars20543APAVsPCSK6-0.026253050968121
61609215666:160921566:T:Grs9457930GIntronicLPAL20.0258310964870387
5557991845:55799184:C:Ars157843AOthers-0.0252169357053341
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0249757360012197
434460914:3446091:G:Trs3748034TPAVsHGFAC-0.024920614046915
1629400971:62940097:G:Ars1979722AIntronicDOCK70.0248391867913201
1311223011413:112230114:T:Crs2774440COthers-0.0247778115293641
4877699294:87769929:T:Crs13106574CPAVsSLC10A6-0.0247278689256944
61398340126:139834012:T:Grs632057GOthers0.0242975010910649
71066421237:106642123:C:Trs7786720TOthers0.0239178806368051
1111672863011:116728630:G:Crs12225230CPAVsSIK30.0236734543510737
4261268384:26126838:A:Grs7673206GOthers-0.0235350060509254
9866172659:86617265:A:Grs1982151GPAVsRMI1-0.0234947759944124
3123931253:12393125:C:Grs1801282GPAVsPPARG0.0230350748764633
7259918267:25991826:T:Crs4722551COthersMIR148A0.0230092613147932
8199414488:19941448:C:Trs6989064TIntronic0.0229190338886581
166582159316:65821593:G:Ars459950AOthers0.0226690864461264
125784371112:57843711:G:Ars2229357APAVsINHBC0.0224389370551251
1111651152211:116511522:C:Trs519000TIntronic-0.0219208135038006
174193137517:41931375:A:Grs12453522GPAVsCD300LG-0.0217180346023681
172669486117:26694861:G:Ars704APAVsVTN0.0215461115593686
1111174934911:111749349:A:Trs611010TPAVsALG9, FDXACB10.0212719006315419
7264038017:26403801:A:Grs2698717GIntronicSNX100.0208156747943142
1938653911:93865391:C:Trs12138486TOthers-0.0205459079235124
1630455061:63045506:A:Crs1748201CIntronicDOCK7-0.0204759790913444
4896688594:89668859:C:Trs7657817TPAVsFAM13A0.0204658372324265
31501283923:150128392:G:Ars879634APAVsTSC22D2-0.0200694892195427
2992261722:99226172:AT:Ars66468243APTVsUNC50-0.0200536172441534
133101290413:31012904:C:Trs1928496TOthers-0.0199722480617578
161513197416:15131974:G:Trs1136001TPAVsNTAN1-0.0197769432263899
111335603011:13356030:A:Grs7947951GIntronicBMAL1-0.0197321926055142
114826673611:48266736:C:Grs7120775GPTVsOR4X20.0196661497164627
7729893907:72989390:A:Grs11974409GIntronicTBL20.0194912658530181
61274551386:127455138:C:Trs7766106TIntronicRSPO3-0.0193227847054801
106384113010:63841130:G:Ars4948296AIntronicARID5B0.0193087947863157
4880522194:88052219:T:Crs342467CPAVsAFF1-0.0192839900525862
8199689298:19968929:T:Crs16842CIntronic-0.0191124114065737
22423956742:242395674:G:Ars4675812AIntronicFARP20.0189415124944008
168153479016:81534790:T:Crs2925979CIntronicCMIP0.0189228007927226
61337897286:133789728:G:Ars9493627APAVsEYA40.0187305893535227
3523462403:52346240:T:Grs17052061GOthersDNAH10.018413615581685
21789427892:178942789:G:Trs1435572TIntronicPDE11A-0.0183374972593151
223746959022:37469590:C:Trs387907018TPAVsTMPRSS6-0.0182935350055311
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0182085992882571
8106680478:10668047:A:Grs4840517GIntronicPINX1, SOX7-0.0180553835913158
165699723316:56997233:G:Ars1864163AIntronicCETP-0.0178729266007039
6437588736:43758873:G:Ars6905288AOthersVEGFA-0.0178233971465707
1212450428312:124504283:T:Crs825508CIntronicRFLNA-0.0177343076665587
31863377133:186337713:T:Crs4917CPAVsAHSG-0.0174743609906072
149484484314:94844843:T:Grs1303GPAVsSERPINA10.0174220918418355
7259975367:25997536:A:Grs4719841GOthers-0.017327943616967
1438864941:43886494:C:Trs2782643TPAVsSZT2-0.0173088863289002
22423226802:242322680:T:Crs3771555CIntronicFARP20.0172871670765181
6437655336:43765533:A:Grs1885659GOthers-0.0170388580320456
8593392798:59339279:T:Crs7007181CIntronicUBXN2B0.0170178199786888
11507275391:150727539:G:Ars2230061APAVsCTSS-0.0169924751939464
221822287722:18222877:CAACTGCCACGCTC:Crs71690189CPTVsBID-0.0169920445858634

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 3467 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References