Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Trunc.: Free Chol. in XL VLDL

  • Estimated h2 in white British population in UKB: 0.100 (95% CI:[0.082, 0.118]).

Trunc.: Free Chol. in XL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelTruncated (excl. BLQ measurements)R20.034[0.031, 0.038]8.8x10-245
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.052[0.047, 0.056]<1.0x10-300
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.078[0.073, 0.083]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.069[0.064, 0.074]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.052[0.048, 0.057]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.116[0.110, 0.123]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.108[0.102, 0.114]<1.0x10-300
Non-British whiteCovariate-only modelTruncated (excl. BLQ measurements)R20.023[0.009, 0.038]6.2x10-08
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.040[0.021, 0.059]1.2x10-12
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.075[0.050, 0.101]8.0x10-23
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.081[0.055, 0.107]1.7x10-24
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.040[0.021, 0.060]9.0x10-13
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.105[0.076, 0.134]1.3x10-31
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.109[0.080, 0.138]7.4x10-33
South AsianCovariate-only modelTruncated (excl. BLQ measurements)R20.014[-0.003, 0.031]2.3x10-03
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.058[0.026, 0.091]4.2x10-10
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.079[0.042, 0.116]2.5x10-13
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.071[0.035, 0.106]4.9x10-12
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.059[0.026, 0.091]3.6x10-10
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.093[0.053, 0.132]2.0x10-15
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.078[0.042, 0.115]3.2x10-13
AfricanCovariate-only modelTruncated (excl. BLQ measurements)R20.003[-0.006, 0.012]3.7x10-01
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.009[-0.006, 0.025]1.2x10-01
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.027[0.001, 0.053]7.5x10-03
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.004[-0.006, 0.015]2.9x10-01
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.009[-0.006, 0.025]1.2x10-01
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.026[0.000, 0.051]9.0x10-03
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.007[-0.007, 0.021]1.7x10-01
OthersCovariate-only modelTruncated (excl. BLQ measurements)R20.046[0.033, 0.058]3.1x10-37
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.047[0.035, 0.060]9.4x10-39
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.069[0.054, 0.083]6.7x10-56
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.060[0.046, 0.073]1.4x10-48
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.048[0.036, 0.060]3.6x10-39
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.118[0.100, 0.136]4.8x10-97
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.110[0.092, 0.128]2.9x10-90

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023493/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 7910 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0016455026621183
8198135298:19813529:A:Grs268GPAVsLPL0.0015843680176555
8198197248:19819724:C:Grs328GPTVsLPL-0.0014797183922591
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0014344664699046
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.0013138139526348
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0011768614872422
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0010651210014823
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0010185744621347
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.0009989363715903
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0009148731745009
2212315242:21231524:G:Ars676210APAVsAPOB-0.00080207480467
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.0007149538449163
194541445119:45414451:T:Crs439401COthersAPOC10.0006741944475213
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0005847926704022
81264882508:126488250:C:Trs2980869TIntronic-0.0005183102357266
81265073898:126507389:C:Ars2954038AIntronic-0.0004613468794044
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.0004341429661703
2212339722:21233972:T:Crs533617CPAVsAPOB-0.0004099269057613
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0003632844071665
116403124111:64031241:C:Trs35169799TPAVsPLCB30.0003448514962723
8182724388:18272438:C:Trs4921914TOthers-0.0003383398286614
1629828911:62982891:C:Trs1168045TIntronicDOCK70.0003333345085313
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.0003333244931004
61610173636:161017363:G:Ars73596816AIntronicLPA-0.0003290034832684
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.0003252946454544
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.0002998131609847
61605576436:160557643:C:Trs2282143TPAVsSLC22A1-0.0002969161771467
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0002906861582558
51563960035:156396003:C:Trs12657266TOthers0.000289238787739
194541564019:45415640:G:Ars445925AOthersAPOC10.0002874111178056
176420828517:64208285:C:Grs1801690GPAVsAPOH-0.0002855726109926
632552086HLA-DRB1*1302HLA-DRB1*1302+PAVsHLA-DRB10.0002836394232657
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0002755513270028
6437588736:43758873:G:Ars6905288AOthersVEGFA0.000267406964488
8198194398:19819439:A:Grs326GIntronicLPL-0.0002594928159124
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0002584019957527
2212252812:21225281:C:Trs1042034TPAVsAPOB0.0002572736235225
71304333847:130433384:C:Trs4731702TOthers-0.0002516043542672
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0002514609500138
22270998542:227099854:T:Crs2972147COthers0.0002408186438733
8198057088:19805708:G:Ars1801177APAVsLPL0.000240351714318
167210809316:72108093:G:Ars2000999AIntronicHPR, TXNL4B0.0002370064681018
61611070186:161107018:G:Ars9457997AOthers-0.0002364319920341
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0002350789622947
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.0002336966604903
165699332416:56993324:C:Ars3764261AOthersCETP-0.0002316659933364
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0002286948995658
8199145988:19914598:C:Ars6586891AOthers-0.0002266268929753
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0002259042009311
5557991845:55799184:C:Ars157843AOthers0.0002251334050982
11098213071:109821307:G:Trs583104TOthersCELSR2, PSRC10.0002194640032326
109483964210:94839642:G:Ars2068888AOthersCYP26A1-0.0002191289676592
165701509116:57015091:G:Crs5880CPAVsCETP0.0002176583528697
91393689539:139368953:G:Ars3812594APAVsSEC16A0.0002157780755324
6324110356:32411035:A:Crs8084CPTVsHLA-DRA0.0002099701251163
8593392798:59339279:T:Crs7007181CIntronicUBXN2B-0.0002048089348958
1111662470311:116624703:G:Trs180326TIntronicBUD13-0.0002006468381961
165699071616:56990716:C:Ars247617AOthers-0.0001996861226266
8199430278:19943027:G:Ars13265868AIntronic-0.0001993434000879
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.0001985800996456
5558618945:55861894:G:Ars9687846AIntronic0.0001984488774903
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0001979672078833
1272785731:27278573:T:Crs17360994CPAVsKDF10.000193898561345
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.0001938408658628
6326000576:32600057:A:Grs35242582GIntronicHLA-DQA10.0001929007205759
61607663216:160766321:C:Trs540713TOthersSLC22A30.0001912697898844
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0001892918643781
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0001872483787756
10526068210:5260682:C:Grs17134592GPAVsAKR1C4-0.0001847186690688
41005109034:100510903:A:Grs3792683GPAVsMTTP0.0001838066829813
5558608665:55860866:G:Trs3936510TIntronic0.0001832233243503
2212949752:21294975:G:Ars541041AOthers0.0001816996683357
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0001814113701512
1311455313413:114553134:C:Trs7994900TIntronicGAS60.0001809968358521
1111663994111:116639941:A:Grs1263149GIntronicBUD13-0.0001809099808982
9866172659:86617265:A:Grs1982151GPAVsRMI10.0001804246813264
61398340126:139834012:T:Grs632057GOthers-0.0001799532506201
224432472722:44324727:C:Grs738409GPAVsPNPLA3-0.0001771126077066
1111651152211:116511522:C:Trs519000TIntronic0.0001724578123383
X109689152X:109689152:A:Grs10521528GIntronicRTL9-0.0001668352160432
135104378813:51043788:C:Trs9316497TIntronicDLEU10.0001666811830087
8198521348:19852134:G:Trs17411024TOthers0.0001659778221921
1629570301:62957030:G:Ars10889333AIntronicDOCK7-0.0001657159598889
122047375812:20473758:C:Ars7134375AOthers-0.0001607826065758
61611522406:161152240:G:Ars4252125APAVsPLG0.0001591483271159
7756150067:75615006:C:Trs1057868TPAVsPOR0.0001590862447934
108109607110:81096071:T:Crs7077812COthers0.0001589733127406
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.0001582120546089
61611085366:161108536:C:Trs6935921TOthers-0.0001560484620701
61274551386:127455138:C:Trs7766106TIntronicRSPO30.0001514821827887
168642211216:86422112:A:Grs1728407GOthers0.0001504557174586
191932992419:19329924:C:Trs2228603TPAVsNCAN-0.0001486975081317
19839896019:8398960:C:Trs201862465TPAVsKANK3-0.000146875301955
12072883921:207288392:A:Grs17020993GIntronicC4BPA0.0001422638875394
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.0001410725337459
1629226601:62922660:G:Ars4350231AIntronicDOCK7-0.0001401337315396
174193137517:41931375:A:Grs12453522GPAVsCD300LG0.0001383338727453
116157138211:61571382:G:Ars174549AUTRFADS10.0001373613651961
61605074786:160507478:A:Grs3798178GIntronicIGF2R-0.0001340296692918
156379323815:63793238:T:Grs11635675GOthersUSP30.0001339766577679

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 7910 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References