Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: CE to Tot. Lipids in CMs and XXL VLDL % (BLQ removed)

  • Estimated h2 in white British population in UKB: 0.044 (95% CI:[0.034, 0.055]).

Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.016[0.014, 0.019]1.7x10-111
white BritishGenotype-only modelBLQ (derived)R20.004[0.003, 0.006]7.3x10-31
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.030[0.027, 0.033]7.3x10-208
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.030[0.027, 0.033]7.8x10-208
white BritishFull model (covariates and genotypes)BLQ (derived)R20.008[0.007, 0.010]1.1x10-59
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.047[0.043, 0.051]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.047[0.043, 0.051]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.016[0.003, 0.028]1.4x10-05
Non-British whiteGenotype-only modelBLQ (derived)R20.005[-0.002, 0.012]1.6x10-02
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.037[0.018, 0.055]2.5x10-11
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.027[0.011, 0.043]1.2x10-08
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.008[-0.001, 0.016]2.4x10-03
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.052[0.031, 0.074]1.1x10-15
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.043[0.023, 0.063]4.8x10-13
South AsianCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.012[-0.003, 0.028]4.6x10-03
South AsianGenotype-only modelBLQ (derived)R20.005[-0.005, 0.014]8.3x10-02
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.012[-0.003, 0.028]4.1x10-03
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.013[-0.003, 0.029]3.7x10-03
South AsianFull model (covariates and genotypes)BLQ (derived)R20.007[-0.005, 0.018]3.6x10-02
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.026[0.003, 0.048]3.7x10-05
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.026[0.003, 0.048]3.7x10-05
AfricanCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.003[-0.006, 0.012]3.7x10-01
AfricanGenotype-only modelBLQ (derived)R20.000[-0.002, 0.002]8.5x10-01
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.007[-0.007, 0.021]1.8x10-01
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.010[-0.006, 0.026]1.1x10-01
AfricanFull model (covariates and genotypes)BLQ (derived)R20.003[-0.006, 0.013]3.5x10-01
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.011[-0.006, 0.027]9.8x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.012[-0.006, 0.029]8.2x10-02
OthersCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.038[0.027, 0.049]3.1x10-30
OthersGenotype-only modelBLQ (derived)R20.003[-0.000, 0.007]6.7x10-04
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.030[0.020, 0.040]2.8x10-24
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.032[0.022, 0.042]1.1x10-25
OthersFull model (covariates and genotypes)BLQ (derived)R20.031[0.021, 0.041]9.6x10-25
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.067[0.052, 0.081]2.7x10-52
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.066[0.052, 0.080]9.6x10-52

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023581/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 3276 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA1.48952465380663
61609611376:160961137:T:Crs3798220CPAVsLPA1.28079153936972
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.477662119515838
61610173636:161017363:G:Ars73596816AIntronicLPA0.433248369324868
194541564019:45415640:G:Ars445925AOthersAPOC1-0.405684413918691
176421058017:64210580:A:Crs1801689CPAVsAPOH0.353600659769668
1555056471:55505647:G:Trs11591147TPAVsPCSK9-0.276000245968595
165700659016:57006590:C:Trs7499892TIntronicCETP0.263883312759479
165699332416:56993324:C:Ars3764261AOthersCETP-0.245165862986744
1111664891711:116648917:G:Crs964184CUTRZPR10.222447095448473
8198197248:19819724:C:Grs328GPTVsLPL0.209113270262382
11098171921:109817192:A:Grs7528419GUTRCELSR2-0.204084646403436
2213890192:21389019:A:Grs538928GOthers0.20201078513687
224432472722:44324727:C:Grs738409GPAVsPNPLA30.197326462245801
2277309402:27730940:T:Crs1260326CPAVsGCKR0.195068814888807
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.193345322378578
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.191413794816042
61610060776:161006077:C:Trs41272114TPTVsLPA-0.179736484765565
91361538759:136153875:C:Trs651007TOthersABO0.169921623324441
61610688916:161068891:G:Ars9295130AIntronicLPA-0.158668715410276
61609603596:160960359:T:Crs6919346CIntronicLPA0.144381708818077
31863377133:186337713:T:Crs4917CPAVsAHSG-0.141888164276058
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.138645218083857
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.134341299631006
61610995036:161099503:G:Ars5014650AOthers0.133568449390384
204453465120:44534651:G:Ars6065904AIntronicPLTP0.125919918388262
149484484314:94844843:T:Grs1303GPAVsSERPINA10.117169114550834
61609119086:160911908:C:Trs9365166TIntronicLPAL20.11433652212718
61611379906:161137990:G:Ars783147AIntronicPLG-0.113612091780085
194541445119:45414451:T:Crs439401COthersAPOC1-0.113225110520981
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.110581016056823
7259975367:25997536:A:Grs4719841GOthers-0.109957248048742
61611085366:161108536:C:Trs6935921TOthers0.106498856291364
223746959022:37469590:C:Trs387907018TPAVsTMPRSS6-0.0928342671009342
172669486117:26694861:G:Ars704APAVsVTN0.0841851696732005
41554917594:155491759:G:Ars4220APAVsFGB-0.0838403834292796
8106744678:10674467:T:Crs11250080CIntronicPINX1, SOX7-0.0829190761114281
61610101506:161010150:C:Trs41272078TIntronicLPA0.0818316587802128
61611522406:161152240:G:Ars4252125APAVsPLG-0.0787946885032135
3123931253:12393125:C:Grs1801282GPAVsPPARG0.0738402685538704
5557991845:55799184:C:Ars157843AOthers-0.0734752574801731
195153513019:51535130:A:Grs3745540GPTVsKLK12-0.073272107308132
6325780526:32578052:G:Ars532098AOthers-0.0729889886301049
81264882508:126488250:C:Trs2980869TIntronic0.0719486875728782
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.0711925573251068
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0709617623519274
2212188052:21218805:C:Trs6756501TOthers-0.0676401020846289
91361493999:136149399:G:Ars507666AIntronicABO0.0652747402033028
194549630319:45496303:T:Crs9193CPAVsCLPTM10.0652383960293341
122132981312:21329813:C:Ars11045819APAVsSLCO1B1-0.0648169746488717
222198289222:21982892:C:Trs2298428TPAVsYDJC0.0644498087818508
8198783568:19878356:T:Crs7013777COthers0.0640392553743723
5749651225:74965122:G:Ars34358APTVsANKDD1B-0.0637247424326127
1629226601:62922660:G:Ars4350231AIntronicDOCK70.063626214587167
174545189417:45451894:G:Ars4968318APAVsEFCAB130.0628321388102795
21748088992:174808899:T:Crs4325816CIntronicSP30.0618236464574502
2212639002:21263900:G:Ars1367117APAVsAPOB0.0616904985915533
154362226515:43622265:C:Ars3742970APAVsLCMT2-0.0606373440187523
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0601136847263078
51806266865:180626686:T:Crs404560CPAVs0.0597802228298014
204454504820:44545048:C:Trs4810479TOthersPLTP-0.0590143429401391
81264844638:126484463:C:Trs2954025TIntronic0.0586306182477937
157717615815:77176158:T:Crs3812908CPTVsSCAPER-0.0584653383612126
155863558315:58635583:C:Ars4775031AIntronicALDH1A2-0.0579845246307712
222520972422:25209724:T:Crs5996763CPTVsSGSM1-0.0575142957070226
61610075386:161007538:G:Crs7765803CPAVsLPA-0.0572878901380667
9922073089:92207308:A:Grs7357754GOthers-0.057179439242212
1112328392211:123283922:T:Crs2714059COthers0.0562702791234514
11779406121:177940612:A:Grs10158853GPAVs-0.0555634264339773
111335603011:13356030:A:Grs7947951GIntronicBMAL1-0.0555314180321548
61371350046:137135004:T:Crs9494573COthers-0.0547929627757496
2212883212:21288321:A:Grs562338GOthers0.0535998782625832
11504849871:150484987:G:Ars13294APAVsECM1-0.0533953743487057
195185029019:51850290:G:Ars1130426APAVsETFB0.0522300400398675
22270664712:227066471:T:Crs2972153COthers-0.0517576034571184
194540341219:45403412:C:Trs1160985TIntronicTOMM40-0.0513184345610663
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.0511357108206567
7216403617:21640361:T:Crs10269582CPAVsDNAH11-0.0507010512474286
109406291410:94062914:C:Trs11186915TIntronicMARCHF5-0.0500992930782547
19720439419:7204394:T:Grs2042901GIntronicINSR0.0499767957052198
1111665756111:116657561:C:Trs3741298TIntronicZPR10.0494758289566215
173510986417:35109864:A:Grs4796274GOthers0.049249647278157
11785146221:178514622:C:Trs12568310TPAVsC1orf2200.0491138272996066
5784362115:78436211:C:Trs1915706TIntronicDMGDH0.0489614696092302
142488388714:24883887:G:Ars8017377APAVsNYNRIN0.0484930225171863
146918348014:69183480:A:Grs454988GIntronicRAD51B0.0484510040399169
19718476219:7184762:A:Grs891088GIntronicINSR0.0484416411001999
2508224632:50822463:C:Trs2473TIntronicNRXN10.0484216918212328
4896688594:89668859:C:Trs7657817TPAVsFAM13A0.0483869091865918
194534852219:45348522:G:Trs12162222TOthersNECTIN20.0481206154019438
91393689539:139368953:G:Ars3812594APAVsSEC16A-0.0478839117825363
5974880075:97488007:T:Crs9314222CIntronic0.0477827143616705
157771358615:77713586:A:Grs34591043GIntronicHMG20A-0.0474510870998309
2295748752:29574875:T:Crs13029602CIntronicALK0.047270824619114
136814596313:68145963:G:Ars9541150AOthers-0.0465477818944687
166046635916:60466359:T:Crs1423904CIntronic0.0463832529719572
9903437809:90343780:A:Crs2378757CPTVsCTSL0.0463574609657119
4582720824:58272082:T:Crs1012188COthers0.046337298569822
12883220312:8832203:A:Grs7132012GOthers0.0463253309507856
155870306915:58703069:A:Crs17821316CIntronicALDH1A2, LIPC-0.0461143223338246

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 3276 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References