Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Free Chol. to Tot. Lipids in CMs and XXL VLDL % (BLQ removed)

  • Estimated h2 in white British population in UKB: 0.055 (95% CI:[0.043, 0.066]).

Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.044[0.040, 0.048]8.0x10-286
white BritishGenotype-only modelBLQ (derived)R20.007[0.005, 0.008]2.8x10-44
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.041[0.037, 0.044]1.3x10-264
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.045[0.041, 0.049]4.7x10-296
white BritishFull model (covariates and genotypes)BLQ (derived)R20.011[0.009, 0.013]1.9x10-69
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.082[0.077, 0.087]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.091[0.086, 0.096]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.034[0.016, 0.052]5.8x10-10
Non-British whiteGenotype-only modelBLQ (derived)R20.000[-0.002, 0.002]5.0x10-01
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.016[0.003, 0.028]2.9x10-05
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.018[0.005, 0.031]8.6x10-06
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.016[0.004, 0.029]2.2x10-05
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.044[0.024, 0.063]2.7x10-12
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.053[0.031, 0.074]1.3x10-14
South AsianCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.028[0.005, 0.052]2.7x10-05
South AsianGenotype-only modelBLQ (derived)R20.003[-0.005, 0.010]1.9x10-01
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.028[0.005, 0.052]2.7x10-05
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.044[0.015, 0.072]1.6x10-07
South AsianFull model (covariates and genotypes)BLQ (derived)R20.009[-0.004, 0.023]1.6x10-02
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.057[0.025, 0.089]1.9x10-09
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.067[0.032, 0.101]7.0x10-11
AfricanCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.025[0.000, 0.051]3.3x10-02
AfricanGenotype-only modelBLQ (derived)R20.011[-0.006, 0.028]1.6x10-01
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.075[0.034, 0.117]1.9x10-04
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.085[0.042, 0.129]6.7x10-05
AfricanFull model (covariates and genotypes)BLQ (derived)R20.006[-0.007, 0.019]2.8x10-01
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.100[0.054, 0.147]1.5x10-05
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.087[0.043, 0.131]5.9x10-05
OthersCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.054[0.041, 0.067]1.4x10-39
OthersGenotype-only modelBLQ (derived)R20.003[-0.000, 0.006]3.9x10-03
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.036[0.025, 0.047]8.9x10-27
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.042[0.031, 0.054]2.3x10-31
OthersFull model (covariates and genotypes)BLQ (derived)R20.022[0.014, 0.031]3.8x10-17
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.086[0.070, 0.102]1.5x10-63
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.097[0.080, 0.114]2.6x10-71

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023582/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 2707 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA0.409741482729792
61609611376:160961137:T:Crs3798220CPAVsLPA0.35870409697424
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.281662226606316
176421058017:64210580:A:Crs1801689CPAVsAPOH0.140200025806681
61610173636:161017363:G:Ars73596816AIntronicLPA0.115988430770696
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.100413643481753
224432472722:44324727:C:Grs738409GPAVsPNPLA30.0967988417631485
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.0892635539508071
194541564019:45415640:G:Ars445925AOthersAPOC10.0882698677617636
61610060776:161006077:C:Trs41272114TPTVsLPA-0.079015983366555
61609603596:160960359:T:Crs6919346CIntronicLPA0.0779558890042743
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.07201606851334
8198197248:19819724:C:Grs328GPTVsLPL0.0716093835494765
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.0693338284971198
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0599142440538134
2277309402:27730940:T:Crs1260326CPAVsGCKR0.0570763532416026
91361493999:136149399:G:Ars507666AIntronicABO0.0543512994887973
61609119086:160911908:C:Trs9365166TIntronicLPAL20.0483927203903296
165699332416:56993324:C:Ars3764261AOthersCETP-0.047569708403488
1111664891711:116648917:G:Crs964184CUTRZPR10.0449225803680901
61611085366:161108536:C:Trs6935921TOthers0.0437272072039291
194541445119:45414451:T:Crs439401COthersAPOC1-0.0420543428826835
116155780311:61557803:T:Crs102275COthersTMEM258-0.0398673868860777
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.0393173826558563
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0391267630584637
61611379906:161137990:G:Ars783147AIntronicPLG-0.0372740173165278
2212252812:21225281:C:Trs1042034TPAVsAPOB0.0354278032227134
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK50.034842946975226
61611522406:161152240:G:Ars4252125APAVsPLG-0.0321520340088694
204454504820:44545048:C:Trs4810479TOthersPLTP-0.0313349742218876
61610688916:161068891:G:Ars9295130AIntronicLPA-0.0308272004649694
155870306915:58703069:A:Crs17821316CIntronicALDH1A2, LIPC-0.02996332843375
81264882508:126488250:C:Trs2980869TIntronic0.0296903083057949
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0296332523501703
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.0292899305357561
176421685417:64216854:A:Grs52797880GPAVsAPOH0.0285569359353529
122101148012:21011480:T:Grs4149117GPAVsSLCO1B7-0.0279258130136683
155883399315:58833993:G:Ars6078APAVsLIPC0.0264752902132538
91361538759:136153875:C:Trs651007TOthersABO0.0262029775386397
155854464415:58544644:G:Ars12594571AIntronicALDH1A20.0255488408441747
155858810415:58588104:G:Ars4775027AIntronicALDH1A2-0.0254279325301561
155885891015:58858910:T:Crs7175421CIntronicLIPC-0.0251693488639988
12303018111:230301811:T:Grs11122450GIntronicGALNT20.0248064313188682
155861055515:58610555:G:Ars1816879AIntronicALDH1A2-0.0230489750350991
2213936232:21393623:A:Grs576203GOthers0.0229285214951112
7730358577:73035857:T:Crs7800944CIntronicMLXIPL0.0224416773794125
116157976011:61579760:T:Crs174555CIntronicFADS1, FADS2-0.0224255345200975
91393689539:139368953:G:Ars3812594APAVsSEC16A-0.0221714187995951
1011416927610:114169276:A:Grs3736946GPAVsACSL50.0218924476013425
191828594419:18285944:G:Ars11554159APAVsIFI30-0.021673208705593
147147110014:71471100:G:Ars12100737AIntronicPCNX10.0216689577342789
19719497619:7194976:A:Grs4804377GIntronicINSR0.0216542082420197
155872674415:58726744:G:Crs261334CIntronicALDH1A2, LIPC-0.0212345676519794
61609536426:160953642:A:Grs41267809GPAVsLPA-0.0207625678822181
155862332815:58623328:G:Trs17821226TIntronicALDH1A2-0.0201138171705422
61610101506:161010150:C:Trs41272078TIntronicLPA0.0199790530857216
21655018492:165501849:A:Crs3923113COthers0.0194400349015516
41002607894:100260789:T:Crs698CPAVsADH1C-0.0194250868744634
71502173097:150217309:C:Trs3735080TPAVsGIMAP7-0.0192979658444074
61303741026:130374102:C:Ars9388768APAVsL3MBTL3-0.0191455705307196
116540893711:65408937:C:Trs3741378TPAVsSIPA10.0186694942543094
165700659016:57006590:C:Trs7499892TIntronicCETP0.0186284016613556
204455401520:44554015:T:Crs6065906COthers0.0184516536377858
172970594717:29705947:T:Crs2525574CPTVsNF10.0183496160278256
712435257:1243525:T:Crs7456553COthers0.0182395523833194
176420828517:64208285:C:Grs1801690GPAVsAPOH0.0180593222390552
6324102106:32410210:T:Crs3129884CPAVsHLA-DRA-0.0180134795041921
145737960814:57379608:G:Ars850272AIntronicOTX2-AS10.0179225929650137
9958873209:95887320:G:Trs2275848TPAVsNINJ10.0177799174153834
5557991845:55799184:C:Ars157843AOthers-0.0174540576441133
145882303314:58823033:G:Ars7151036AIntronicARID4A-0.0173195388256813
6293857726:29385772:G:Crs1011985CPTVsOR12D1-0.0172300319568283
3123931253:12393125:C:Grs1801282GPAVsPPARG0.0172150588591348
101733417610:17334176:G:Ars359298AOthers0.017204478179333
8196353288:19635328:C:Trs10888170TOthers0.0167762840341206
195464582119:54645821:A:Grs36634GUTRCNOT30.0167640305096945
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.0167473035894565
2156746862:15674686:T:Crs13029846CPAVsNBAS-0.0164906670685046
7259940097:25994009:G:Ars6980357AOthersMIR148A-0.0164830858671781
191952579219:19525792:T:Crs2965185CIntronicGATAD2A0.0161352328068906
11779406121:177940612:A:Grs10158853GPAVs-0.0159881288564115
156464818615:64648186:C:Trs35755513TPTVsCSNK1G1-0.0158398286542342
6325780526:32578052:G:Ars532098AOthers-0.0158195615144242
61610813316:161081331:A:Grs1740428GIntronicLPA0.0157194179882505
7281725867:28172586:T:Crs917115CIntronicJAZF1-0.0155294035405272
177639543017:76395430:C:Trs2292642TPAVsPGS10.0154362344730249
168366355116:83663551:C:Trs16961095TIntronicCDH130.0153390080108602
710517767:1051776:A:Grs10229964GIntronicC7orf50-0.0153318478831418
81264793628:126479362:C:Trs6982502TIntronic0.0151696156926537
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0151086040654941
22270983872:227098387:A:Grs1515114GOthers-0.0149488603962942
1111726631211:117266312:C:Grs2305830GPAVsCEP164-0.0146150095103162
71304333847:130433384:C:Trs4731702TOthers0.0146099907613702
191034969019:10349690:T:Crs8113091COthers0.0145494807802587
5140776855:14077685:T:Crs392421COthers-0.0145391495119702
61274822076:127482207:C:Ars9491701AIntronicRSPO3-0.0144739319376963
18273399018:2733990:C:Trs1893123TIntronicSMCHD10.0143657531333165
8254646908:25464690:G:Trs11992444TOthers0.0142610739893803
167198699516:71986995:G:Ars12708919APAVsPKD1L30.0141463737444602
21748088992:174808899:T:Crs4325816CIntronicSP30.0140177782678408

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 2707 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References