Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: PLs to Tot. Lipids in XL VLDL % (BLQ removed)

  • Estimated h2 in white British population in UKB: 0.056 (95% CI:[0.043, 0.069]).

Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.011[0.008, 0.013]5.1x10-81
white BritishGenotype-only modelBLQ (derived)R20.007[0.005, 0.008]3.1x10-52
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.039[0.035, 0.042]4.2x10-297
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.056[0.052, 0.061]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (derived)R20.012[0.010, 0.014]6.5x10-92
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.047[0.043, 0.052]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.067[0.062, 0.072]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.022[0.008, 0.037]4.3x10-08
Non-British whiteGenotype-only modelBLQ (derived)R20.011[0.001, 0.021]1.3x10-04
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.044[0.024, 0.064]9.6x10-15
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.057[0.035, 0.080]6.1x10-19
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.020[0.006, 0.034]1.8x10-07
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.058[0.035, 0.080]4.8x10-19
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.077[0.051, 0.102]5.6x10-25
South AsianCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.009[-0.004, 0.023]1.3x10-02
South AsianGenotype-only modelBLQ (derived)R20.002[-0.005, 0.009]2.2x10-01
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.013[-0.003, 0.030]2.4x10-03
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.038[0.011, 0.065]2.4x10-07
South AsianFull model (covariates and genotypes)BLQ (derived)R20.006[-0.005, 0.016]5.1x10-02
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.019[-0.000, 0.038]3.2x10-04
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.047[0.018, 0.077]8.5x10-09
AfricanCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.009[-0.006, 0.024]8.3x10-02
AfricanGenotype-only modelBLQ (derived)R20.005[-0.006, 0.016]2.1x10-01
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.015[-0.005, 0.035]2.3x10-02
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.048[0.014, 0.082]4.7x10-05
AfricanFull model (covariates and genotypes)BLQ (derived)R20.001[-0.004, 0.006]5.7x10-01
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.022[-0.002, 0.046]6.6x10-03
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.056[0.020, 0.093]1.1x10-05
OthersCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.009[0.004, 0.015]3.5x10-09
OthersGenotype-only modelBLQ (derived)R20.003[-0.000, 0.006]6.1x10-04
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.029[0.019, 0.039]3.7x10-26
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.051[0.038, 0.064]1.1x10-44
OthersFull model (covariates and genotypes)BLQ (derived)R20.008[0.002, 0.013]1.0x10-07
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.037[0.026, 0.049]4.9x10-33
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.061[0.047, 0.075]1.7x10-53

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023584/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 3564 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
1555056471:55505647:G:Trs11591147TPAVsPCSK9-0.227583523990119
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.140361207540951
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.105913693844411
165699332416:56993324:C:Ars3764261AOthersCETP-0.0932166360580358
165701509116:57015091:G:Crs5880CPAVsCETP0.0881444762909849
165700659016:57006590:C:Trs7499892TIntronicCETP0.0816897992388276
165700735316:57007353:C:Trs5883TPCVsCETP-0.0808771903245427
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0681517367954972
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0672984128424588
194542294619:45422946:A:Grs4420638GOthersAPOC10.064285013115421
191123120319:11231203:G:Ars72658867APAVsLDLR-0.0631287731984734
2212639002:21263900:G:Ars1367117APAVsAPOB0.0525308815363847
166797632016:67976320:A:Trs4986970TPAVsLCAT0.0518580234310643
165699071616:56990716:C:Ars247617AOthers-0.0474370593798195
11098213071:109821307:G:Trs583104TOthersCELSR2, PSRC10.0439199659552548
167211400216:72114002:C:Trs217181TIntronicTXNL4B-0.0414604046676434
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0400538548646027
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.0384375051610566
2212315242:21231524:G:Ars676210APAVsAPOB-0.0364282892813262
8198525868:19852586:T:Crs4922117COthers-0.0356146193824408
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0350803784698395
9153047829:15304782:C:Ars686030AIntronicTTC39B-0.0340434004928139
2277309402:27730940:T:Crs1260326CPAVsGCKR0.0338263919238469
11509406251:150940625:T:Grs267738GPAVsCERS2-0.0295550645783384
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.0287669291236563
2212949752:21294975:G:Ars541041AOthers0.0282289747409454
7445819867:44581986:T:Crs17725246COthersNPC1L10.0278882081721909
2212339722:21233972:T:Crs533617CPAVsAPOB-0.0277907159394313
632605398HLA-DQA1*0101HLA-DQA1*0101+PAVsHLA-DQA10.0277616363210985
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.0273619061173809
194541445119:45414451:T:Crs439401COthersAPOC10.0270088312708277
116155268011:61552680:G:Trs174537TOthersMYRF-0.02669336352922
166792004916:67920049:G:Ars73594554APAVsNRN1L-0.0260917998746419
2440738812:44073881:T:Crs6544713CIntronicABCG8-0.0256104610770128
7730358577:73035857:T:Crs7800944CIntronicMLXIPL0.0240903144185954
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0239617067121421
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.0228329681622319
176706087217:67060872:T:Crs113408695COthersABCA90.0225085337627976
91361434429:136143442:A:Grs612169GIntronicABO0.022474708367083
194544846519:45448465:T:Grs5167GPAVsAPOC4, APOC4-APOC2-0.0218464050612792
31863377133:186337713:T:Crs4917CPAVsAHSG0.0218126449160569
51563916285:156391628:T:Crs6874202COthersTIMD40.0213219134472405
7446222867:44622286:G:Ars217358AOthersTMED4-0.0210644802716051
176421058017:64210580:A:Crs1801689CPAVsAPOH0.0201192849189002
91361548679:136154867:G:Trs495828TOthersABO0.019688248649684
81264817478:126481747:A:Grs2980875GIntronic-0.0196105613485958
165698555516:56985555:A:Grs12448528GOthers-0.019394505660933
204454504820:44545048:C:Trs4810479TOthersPLTP0.0192147669376635
155862439615:58624396:T:Crs11637094CIntronicALDH1A2-0.0189096177744989
5746565395:74656539:T:Crs12916CUTRHMGCR0.0188959923506939
194540883619:45408836:T:Grs405509GOthersAPOE-0.0188066939179654
204455401520:44554015:T:Crs6065906COthers-0.0187439389907507
1555211091:55521109:G:Ars693668AIntronicPCSK90.0185200148628192
194539526619:45395266:G:Ars157580AIntronicTOMM400.0184392830114623
165699523616:56995236:C:Ars1800775AOthersCETP-0.018257748707546
5744005165:74400516:G:Crs56174528CPAVsANKRD310.0181447073782699
1212142395612:121423956:C:Trs2393791TIntronicHNF1A-0.0176986120804074
194541564019:45415640:G:Ars445925AOthersAPOC1-0.0173168090343186
191121656119:11216561:A:Crs12983082CIntronicLDLR0.0171678941731317
155872674415:58726744:G:Crs261334CIntronicALDH1A2, LIPC-0.0164543626639861
176715017617:67150176:T:Crs2886232CIntronicABCA10-0.0157098977077625
31359323593:135932359:C:Trs687339TOthers0.0155998636389715
194920667419:49206674:G:Ars601338APTVsFUT20.0151985240128792
203432448420:34324484:A:Crs6058312CPAVsRBM39-0.0143709018117574
4772014874:77201487:C:Trs1036788TPAVsFAM47E0.014218694668019
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.0139526667177258
191124265819:11242658:T:Crs1433099CUTRLDLR0.0136700345626121
11075729971:107572997:T:Crs3108680COthers0.0134406585539491
165701609216:57016092:G:Ars5882APAVsCETP0.0132817915495914
1554883691:55488369:A:Grs2479393GOthers-0.0132611985964595
51566939585:156693958:T:Ars1862874APTVsCYFIP2-0.0132082998336318
1011578661110:115786611:G:Trs72823015TOthers-0.0131824236685741
6161453256:16145325:A:Grs9370867GPAVsMYLIP-0.0130950762187628
6326368666:32636866:A:Trs3134996TOthersHLA-DQB1-0.0130057149995206
122133154912:21331549:T:Crs4149056CPAVsSLCO1B1-0.0128157100096823
2212252812:21225281:C:Trs1042034TPAVsAPOB0.0126742006195045
149481340214:94813402:A:Grs926144GOthers0.0122896081739269
12348527601:234852760:C:Trs553427TIntronic0.0122731231601959
174669786317:46697863:T:Crs11652981CIntronicHOXB70.0121813891003784
17757947217:7579472:G:Crs1042522CPAVsTP53-0.0120887201745012
165698513916:56985139:A:Grs9989419GOthers-0.0120701764870247
2440994332:44099433:C:Ars4148217APAVsABCG8-0.0120262045458883
8198197248:19819724:C:Grs328GPTVsLPL-0.0119643845516792
114727025511:47270255:C:Trs2167079TPAVsACP2-0.0118051890299926
204453465120:44534651:G:Ars6065904AIntronicPLTP-0.011735638120915
91361493999:136149399:G:Ars507666AIntronicABO0.0116660727850011
155883399315:58833993:G:Ars6078APAVsLIPC0.0115860190269794
7216073527:21607352:T:Crs12670798CIntronicDNAH110.011394341958885
5746168435:74616843:T:Crs10474433CIntronic0.0113370348856005
1557191661:55719166:G:Trs7551981TOthers0.0113195147748274
165701700216:57017002:T:Grs9923854GIntronicCETP-0.0111366745980682
6154966626:15496662:C:CTrs1308265490CTPTVsJARID2-0.0110883838159806
122683480412:26834804:T:TACTCrs111626763TACTCPAVsITPR2-0.0108644398897098
3128754433:12875443:G:Ars12629133APAVsCAND2-0.0108385953554919
116572730111:65727301:A:Grs491973GPAVsTSGA10IP0.0106792518023442
2212328042:21232804:G:Ars1041968APCVsAPOB0.0106426489694546
147420378914:74203789:G:Ars17782124APAVsMIDEAS-0.0105415655557503
128991681112:89916811:C:Trs2230283TPAVsGALNT4, POC1B-GALNT40.0104082272053528
134025794913:40257949:T:Crs9315723CIntronicCOG6-0.010357150228356
2992261722:99226172:AT:Ars66468243APTVsUNC500.0103474630473626

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 3564 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References