Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: PLs in CMs and XXL VLDL


PLs in CMs and XXL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelOriginal (incl. BLQ measurements)R20.063[0.058, 0.067]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.083[0.077, 0.088]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.085[0.080, 0.090]<1.0x10-300
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.030[0.027, 0.033]3.3x10-256
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.102[0.096, 0.108]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.085[0.079, 0.090]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.148[0.141, 0.154]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.031[0.028, 0.034]1.6x10-263
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.166[0.159, 0.173]<1.0x10-300
Non-British whiteCovariate-only modelOriginal (incl. BLQ measurements)R20.064[0.040, 0.088]7.8x10-24
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.078[0.052, 0.103]9.7x10-29
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.091[0.063, 0.118]1.7x10-33
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.024[0.009, 0.039]9.0x10-10
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.105[0.076, 0.134]5.9x10-39
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.080[0.054, 0.106]1.4x10-29
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.156[0.122, 0.189]3.1x10-58
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.025[0.010, 0.041]4.3x10-10
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.171[0.137, 0.206]1.4x10-64
South AsianCovariate-only modelOriginal (incl. BLQ measurements)R20.020[0.000, 0.040]1.2x10-04
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.065[0.031, 0.099]1.8x10-12
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.088[0.049, 0.126]1.7x10-16
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.030[0.006, 0.054]2.3x10-06
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.102[0.061, 0.143]5.2x10-19
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.066[0.032, 0.101]1.1x10-12
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.086[0.047, 0.124]4.5x10-16
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.030[0.006, 0.054]2.4x10-06
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.110[0.067, 0.152]2.1x10-20
AfricanCovariate-only modelOriginal (incl. BLQ measurements)R20.027[0.001, 0.053]8.9x10-05
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.030[0.003, 0.058]3.2x10-05
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.016[-0.005, 0.036]2.9x10-03
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.017[-0.004, 0.038]1.7x10-03
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.029[0.002, 0.057]4.0x10-05
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.031[0.003, 0.059]2.5x10-05
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.041[0.009, 0.073]1.2x10-06
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.018[-0.004, 0.039]1.5x10-03
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.056[0.019, 0.092]1.3x10-08
OthersCovariate-only modelOriginal (incl. BLQ measurements)R20.091[0.074, 0.107]1.4x10-90
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.068[0.053, 0.082]2.3x10-67
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.063[0.049, 0.077]5.0x10-63
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.018[0.010, 0.026]4.3x10-19
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.081[0.065, 0.096]2.1x10-80
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.071[0.056, 0.085]2.4x10-70
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.150[0.130, 0.169]2.8x10-153
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.019[0.011, 0.028]4.3x10-20
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.166[0.146, 0.187]1.0x10-171

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23483/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 12757 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA-0.006300388182537
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0047673314144632
8198135298:19813529:A:Grs268GPAVsLPL0.0047271614212838
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.0041281043365273
8198197248:19819724:C:Grs328GPTVsLPL-0.0037807807069987
194541564019:45415640:G:Ars445925AOthersAPOC10.0031733767333889
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0029870539030728
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0028413769616141
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0026313544196784
61610173636:161017363:G:Ars73596816AIntronicLPA-0.0023574529515078
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.0022416865537645
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0021986866263628
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0020484698441795
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.0019993878454034
2212315242:21231524:G:Ars676210APAVsAPOB-0.0019285338470671
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.0018848567666877
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0016689055191976
194541445119:45414451:T:Crs439401COthersAPOC10.0016160767509554
1111666370711:116663707:G:Ars662799AOthersAPOA5-0.0015581219822021
194538959619:45389596:G:Ars7254892AIntronicNECTIN20.0015091810917875
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B2-0.0014632456736019
1111669229311:116692293:C:Ars12721043APAVsAPOA4-0.0014177528861462
81265073898:126507389:C:Ars2954038AIntronic-0.0013883718388737
8198521348:19852134:G:Trs17411024TOthers0.0013328305576156
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0011620993972509
1630270241:63027024:C:Trs4329540TIntronicDOCK70.00109492209408
61611070186:161107018:G:Ars9457997AOthers-0.0010761712192238
8198057088:19805708:G:Ars1801177APAVsLPL0.0010106553200956
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.0009806217157503
61609536426:160953642:A:Grs41267809GPAVsLPA0.0009358655149547
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.000887228129124
1629570301:62957030:G:Ars10889333AIntronicDOCK7-0.000847992975022
116403124111:64031241:C:Trs35169799TPAVsPLCB30.0008458803512209
61605576436:160557643:C:Trs2282143TPAVsSLC22A1-0.0008191035208698
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.0008087094124879
8182724388:18272438:C:Trs4921914TOthers-0.0007989549258644
5558618945:55861894:G:Ars9687846AIntronic0.0007882339610408
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0007845207254218
8198244928:19824492:T:Crs13702CUTRLPL-0.0007555809891122
81264882508:126488250:C:Trs2980869TIntronic-0.0007478230650784
61609603596:160960359:T:Crs6919346CIntronicLPA-0.0007375766413013
116157138211:61571382:G:Ars174549AUTRFADS10.0007058158627961
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.0007045588088504
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0007020983671264
22271014112:227101411:A:Grs2972144GOthers0.0006789464847164
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0006498327830458
51563916285:156391628:T:Crs6874202COthersTIMD40.0006378320438684
12302976591:230297659:C:Trs2281719TIntronicGALNT2-0.0006364810191049
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0006361510049089
1111651152211:116511522:C:Trs519000TIntronic0.0006100698451374
71304333847:130433384:C:Trs4731702TOthers-0.0006095894478854
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.0005824246161133
61607663216:160766321:C:Trs540713TOthersSLC22A30.0005820058215431
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC1-0.0005818619523879
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0005793360391366
165699332416:56993324:C:Ars3764261AOthersCETP-0.0005747412495371
61610101506:161010150:C:Trs41272078TIntronicLPA-0.000570791005899
61398340126:139834012:T:Grs632057GOthers-0.0005610915962661
174193137517:41931375:A:Grs12453522GPAVsCD300LG0.0005594575891382
194537356519:45373565:G:Ars395908AIntronicNECTIN20.0005386893087603
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0005341021019533
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.0005150374627619
632552086HLA-DRB1*1302HLA-DRB1*1302+PAVsHLA-DRB10.0005080999275288
7259918267:25991826:T:Crs4722551COthersMIR148A-0.0005061131969786
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.0005048232644514
1111662470311:116624703:G:Trs180326TIntronicBUD13-0.0005014232521732
5558067515:55806751:A:Grs459193GOthers0.0004981567933509
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0004920032075576
91393689539:139368953:G:Ars3812594APAVsSEC16A0.0004896250913027
122047375812:20473758:C:Ars7134375AOthers-0.0004790147328552
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.0004756898113341
632424101HLA-DRB3*0301HLA-DRB3*0301+PAVsHLA-DRB30.0004753531180938
8106431648:10643164:C:Trs9657541TIntronicPINX1, SOX70.0004625853190207
171748465417:17484654:C:Trs7224725TIntronicPEMT0.0004622961169038
1272399201:27239920:C:Grs6659176GPAVsNR0B20.0004591122850641
111335577011:13355770:C:Trs6486121TIntronicBMAL10.0004511265303451
8593392798:59339279:T:Crs7007181CIntronicUBXN2B-0.0004384642709618
2212252812:21225281:C:Trs1042034TPAVsAPOB0.000435937077915
9866172659:86617265:A:Grs1982151GPAVsRMI10.0004355467866925
1111663394711:116633947:G:Ars10488698APAVsBUD13-0.0004303972445035
434496524:3449652:G:Ars16844401APAVsHGFAC0.0004301602367726
4879967454:87996745:G:Ars17605615AIntronicAFF10.0004297123674677
204457650220:44576502:T:Crs7679CUTRPCIF10.0004283320262878
176421685417:64216854:A:Grs52797880GPAVsAPOH-0.0004268970797059
224432472722:44324727:C:Grs738409GPAVsPNPLA3-0.0004229095916423
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0004159283319095
434460914:3446091:G:Trs3748034TPAVsHGFAC0.0004154198671497
8199430278:19943027:G:Ars13265868AIntronic-0.000411469575829
7756150067:75615006:C:Trs1057868TPAVsPOR0.0004108344468287
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P0.0004066025622757
156335148815:63351488:G:Ars4238372AIntronicTPM1-0.0004031085047425
114720947211:47209472:G:Ars901750AOthersPACSIN3-0.0004024218912818
114674500311:46745003:C:Trs5896TPAVsF2-0.0004017148191884
108109607110:81096071:T:Crs7077812COthers0.0003994055061628
1111663994111:116639941:A:Grs1263149GIntronicBUD13-0.0003942603162075
5558608665:55860866:G:Trs3936510TIntronic0.0003928133818306
8199145988:19914598:C:Ars6586891AOthers-0.000391494133977
21655485692:165548569:G:Ars10490694AIntronicCOBLL1-0.0003882535139692
6437588736:43758873:G:Ars6905288AOthersVEGFA0.0003853723791572
109483964210:94839642:G:Ars2068888AOthersCYP26A1-0.0003838798680642

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 12757 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References