Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: CE in CMs and XXL VLDL


CE in CMs and XXL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelOriginal (incl. BLQ measurements)R20.062[0.058, 0.067]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.083[0.078, 0.089]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.093[0.088, 0.099]<1.0x10-300
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.012[0.010, 0.014]5.8x10-105
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.109[0.104, 0.115]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.085[0.080, 0.091]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.156[0.149, 0.163]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.013[0.010, 0.015]3.7x10-107
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.173[0.166, 0.180]<1.0x10-300
Non-British whiteCovariate-only modelOriginal (incl. BLQ measurements)R20.067[0.043, 0.091]9.2x10-25
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.089[0.062, 0.116]7.3x10-33
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.104[0.075, 0.132]2.6x10-38
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.017[0.004, 0.030]2.5x10-07
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.110[0.080, 0.139]1.0x10-40
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.091[0.064, 0.119]1.1x10-33
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.169[0.135, 0.203]1.4x10-63
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.018[0.005, 0.031]1.9x10-07
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.178[0.143, 0.212]4.5x10-67
South AsianCovariate-only modelOriginal (incl. BLQ measurements)R20.021[0.000, 0.041]8.7x10-05
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.065[0.031, 0.099]1.6x10-12
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.100[0.059, 0.141]9.5x10-19
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.001[-0.004, 0.006]3.3x10-01
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.105[0.064, 0.147]1.1x10-19
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.066[0.031, 0.100]1.4x10-12
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.095[0.055, 0.135]8.8x10-18
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.002[-0.004, 0.007]2.9x10-01
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.112[0.070, 0.155]6.7x10-21
AfricanCovariate-only modelOriginal (incl. BLQ measurements)R20.033[0.004, 0.061]1.4x10-05
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.020[-0.003, 0.043]7.1x10-04
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.029[0.002, 0.057]3.8x10-05
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.001[-0.004, 0.007]4.2x10-01
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.041[0.009, 0.072]1.2x10-06
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.021[-0.002, 0.044]5.8x10-04
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.060[0.022, 0.097]3.9x10-09
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.001[-0.005, 0.007]4.0x10-01
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.073[0.032, 0.114]6.4x10-11
OthersCovariate-only modelOriginal (incl. BLQ measurements)R20.092[0.076, 0.108]4.2x10-92
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.061[0.047, 0.075]1.2x10-60
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.066[0.052, 0.081]4.3x10-66
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.013[0.006, 0.019]1.1x10-13
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.082[0.066, 0.097]1.5x10-81
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.063[0.049, 0.077]4.2x10-63
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.152[0.133, 0.172]2.8x10-156
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.013[0.006, 0.020]4.5x10-14
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.166[0.146, 0.186]1.8x10-171

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23485/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 13158 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0043794306587146
8198135298:19813529:A:Grs268GPAVsLPL0.0036748210207661
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0035520726821628
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.0032403355911242
8198197248:19819724:C:Grs328GPTVsLPL-0.0028788257487653
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0021942137477851
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0020527462499233
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0020195019051586
194541564019:45415640:G:Ars445925AOthersAPOC10.0019327709097482
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.0018073777055668
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0017732059224189
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.0016543801371347
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0016500631573735
61610173636:161017363:G:Ars73596816AIntronicLPA-0.001508592233892
1111669229311:116692293:C:Ars12721043APAVsAPOA4-0.0014406041983494
2212315242:21231524:G:Ars676210APAVsAPOB-0.0014380330194752
1111666370711:116663707:G:Ars662799AOthersAPOA5-0.0013506329837053
194541445119:45414451:T:Crs439401COthersAPOC10.0013153408102929
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0012234811301496
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B2-0.0010609406709123
1630270241:63027024:C:Trs4329540TIntronicDOCK70.0010257607728066
81265073898:126507389:C:Ars2954038AIntronic-0.0010241036586305
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.0009847251739662
8198521348:19852134:G:Trs17411024TOthers0.0009738441290791
165699332416:56993324:C:Ars3764261AOthersCETP-0.0009016076609766
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0008888761869681
8198057088:19805708:G:Ars1801177APAVsLPL0.0008772092933038
61611070186:161107018:G:Ars9457997AOthers-0.000834602948716
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.0007813129054046
194538959619:45389596:G:Ars7254892AIntronicNECTIN20.0007673084905947
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.0007151083326961
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.0007125682196905
8182724388:18272438:C:Trs4921914TOthers-0.000681151504023
61609536426:160953642:A:Grs41267809GPAVsLPA0.0006787947934875
116403124111:64031241:C:Trs35169799TPAVsPLCB30.000663465294474
165701509116:57015091:G:Crs5880CPAVsCETP0.0006390236168668
22271014112:227101411:A:Grs2972144GOthers0.0006206240406197
1629570301:62957030:G:Ars10889333AIntronicDOCK7-0.0006199060521117
2212252812:21225281:C:Trs1042034TPAVsAPOB0.0006131835362786
632424101HLA-DRB3*0301HLA-DRB3*0301+PAVsHLA-DRB30.0005738199543061
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0005680630731078
8198244928:19824492:T:Crs13702CUTRLPL-0.0005563782619747
5558618945:55861894:G:Ars9687846AIntronic0.000549769674416
116157138211:61571382:G:Ars174549AUTRFADS10.0005414966088009
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.0005391198949993
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0005306879550036
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0005292351810786
51563916285:156391628:T:Crs6874202COthersTIMD40.0005222246157318
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.000503999638678
81264882508:126488250:C:Trs2980869TIntronic-0.0004880936726631
1111651152211:116511522:C:Trs519000TIntronic0.0004794308072555
61609603596:160960359:T:Crs6919346CIntronicLPA-0.0004770616740186
71304333847:130433384:C:Trs4731702TOthers-0.0004647515828466
1272785731:27278573:T:Crs17360994CPAVsKDF10.0004453402028666
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0004436755918772
1111662470311:116624703:G:Trs180326TIntronicBUD13-0.0004335817299832
61607663216:160766321:C:Trs540713TOthersSLC22A30.0004276766761416
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.0004273480043708
174193137517:41931375:A:Grs12453522GPAVsCD300LG0.0004184872058099
4879967454:87996745:G:Ars17605615AIntronicAFF10.0004135717477089
8198194398:19819439:A:Grs326GIntronicLPL-0.0004135180931173
2212339722:21233972:T:Crs533617CPAVsAPOB-0.0004112547380119
109483964210:94839642:G:Ars2068888AOthersCYP26A1-0.0004000172598826
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0003980381856729
61398340126:139834012:T:Grs632057GOthers-0.0003890331914047
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC1-0.0003869685596145
434460914:3446091:G:Trs3748034TPAVsHGFAC0.0003776973047488
5558067515:55806751:A:Grs459193GOthers0.0003755340909835
81264817478:126481747:A:Grs2980875GIntronic-0.0003739096827062
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0003666694909103
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0003650026378435
204457650220:44576502:T:Crs7679CUTRPCIF10.000359206047674
434496524:3449652:G:Ars16844401APAVsHGFAC0.0003484812369441
114674500311:46745003:C:Trs5896TPAVsF2-0.0003457372202616
122047375812:20473758:C:Ars7134375AOthers-0.000345274329265
8199430278:19943027:G:Ars13265868AIntronic-0.000345081630101
9866172659:86617265:A:Grs1982151GPAVsRMI10.0003433646753754
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0003432799337154
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.0003428091226575
171748465417:17484654:C:Trs7224725TIntronicPEMT0.0003417571027785
6437588736:43758873:G:Ars6905288AOthersVEGFA0.0003410227460665
7756150067:75615006:C:Trs1057868TPAVsPOR0.0003297388154201
194537356519:45373565:G:Ars395908AIntronicNECTIN20.0003269419940607
61605576436:160557643:C:Trs2282143TPAVsSLC22A1-0.0003261944232548
X109689152X:109689152:A:Grs10521528GIntronicRTL9-0.0003220881480304
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P0.0003202616045511
91393689539:139368953:G:Ars3812594APAVsSEC16A0.0003152385912989
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.0003148672745683
108109607110:81096071:T:Crs7077812COthers0.0003124155659845
8106431648:10643164:C:Trs9657541TIntronicPINX1, SOX70.0003117923551282
8593392798:59339279:T:Crs7007181CIntronicUBXN2B-0.0003116667792511
7259918267:25991826:T:Crs4722551COthersMIR148A-0.0003094879060605
176421685417:64216854:A:Grs52797880GPAVsAPOH-0.0003086180172297
61606088046:160608804:A:Crs16891156CIntronicSLC22A2-0.0003074369754811
5558608665:55860866:G:Trs3936510TIntronic0.00030476692454
156334562215:63345622:G:Ars7170462AIntronicTPM10.0003027356219886
156379323815:63793238:T:Grs11635675GOthersUSP30.0002989224222113
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0002985467265059
61610101506:161010150:C:Trs41272078TIntronicLPA-0.0002965317350021
61609175596:160917559:C:Trs3127569TIntronicLPAL20.0002944598571612

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 13158 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References