Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: PLs in XL VLDL


PLs in XL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelOriginal (incl. BLQ measurements)R20.067[0.062, 0.072]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.062[0.057, 0.067]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.094[0.089, 0.100]<1.0x10-300
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.034[0.030, 0.037]3.4x10-289
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.106[0.100, 0.111]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.064[0.059, 0.068]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.162[0.156, 0.169]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.035[0.032, 0.039]3.7x10-301
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.174[0.167, 0.181]<1.0x10-300
Non-British whiteCovariate-only modelOriginal (incl. BLQ measurements)R20.074[0.049, 0.099]2.0x10-27
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.057[0.035, 0.079]2.5x10-21
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.098[0.070, 0.126]3.7x10-36
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.035[0.017, 0.053]1.9x10-13
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.101[0.073, 0.130]1.8x10-37
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.059[0.036, 0.082]5.0x10-22
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.173[0.139, 0.208]2.2x10-65
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.036[0.018, 0.055]5.1x10-14
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.177[0.143, 0.212]4.8x10-67
South AsianCovariate-only modelOriginal (incl. BLQ measurements)R20.029[0.005, 0.053]2.9x10-06
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.042[0.014, 0.071]1.5x10-08
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.089[0.050, 0.128]9.4x10-17
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.030[0.006, 0.055]1.7x10-06
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.094[0.055, 0.134]1.1x10-17
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.043[0.015, 0.072]1.1x10-08
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.102[0.061, 0.144]4.2x10-19
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.030[0.006, 0.054]2.0x10-06
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.115[0.072, 0.158]2.5x10-21
AfricanCovariate-only modelOriginal (incl. BLQ measurements)R20.040[0.008, 0.071]1.8x10-06
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.023[-0.001, 0.047]3.0x10-04
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.029[0.002, 0.055]5.0x10-05
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.017[-0.004, 0.038]1.7x10-03
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.044[0.011, 0.077]4.6x10-07
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.024[-0.001, 0.048]2.4x10-04
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.064[0.025, 0.103]9.4x10-10
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.018[-0.003, 0.040]1.3x10-03
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.081[0.038, 0.123]5.4x10-12
OthersCovariate-only modelOriginal (incl. BLQ measurements)R20.100[0.083, 0.117]1.1x10-100
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.054[0.041, 0.067]1.1x10-53
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.076[0.060, 0.091]2.0x10-75
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.019[0.011, 0.028]4.3x10-20
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.084[0.068, 0.100]6.2x10-84
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.056[0.043, 0.070]6.5x10-56
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.164[0.144, 0.184]6.3x10-169
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.021[0.012, 0.029]1.5x10-21
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.173[0.152, 0.193]3.8x10-179

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23490/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 14190 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0043796575753507
8198135298:19813529:A:Grs268GPAVsLPL0.0042607416882915
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.0037912376341649
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0034018997365926
8198197248:19819724:C:Grs328GPTVsLPL-0.0032814229083432
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0025886531030077
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0024600661115868
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0024478303158463
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.0022876361096865
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.0019429352238997
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0018833065200424
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0018330453651837
1111669229311:116692293:C:Ars12721043APAVsAPOA4-0.0016154663540989
194541445119:45414451:T:Crs439401COthersAPOC10.0015597557732523
1111666370711:116663707:G:Ars662799AOthersAPOA5-0.0014526340306224
2212315242:21231524:G:Ars676210APAVsAPOB-0.0014407157652931
61610173636:161017363:G:Ars73596816AIntronicLPA-0.0014371998935246
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0012878077636919
8198057088:19805708:G:Ars1801177APAVsLPL0.0012665002967912
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B2-0.0012456904324719
81265073898:126507389:C:Ars2954038AIntronic-0.0011430535525315
8198521348:19852134:G:Trs17411024TOthers0.0010356966114767
165699332416:56993324:C:Ars3764261AOthersCETP-0.0010337743000305
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.0010118173872873
1630270241:63027024:C:Trs4329540TIntronicDOCK70.0009143127475494
2212252812:21225281:C:Trs1042034TPAVsAPOB0.0008203319875024
61609536426:160953642:A:Grs41267809GPAVsLPA0.0008145363590437
61611070186:161107018:G:Ars9457997AOthers-0.0007703567418334
165701509116:57015091:G:Crs5880CPAVsCETP0.0007677832967845
2212339722:21233972:T:Crs533617CPAVsAPOB-0.0007469433718977
22271014112:227101411:A:Grs2972144GOthers0.000739472576982
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.0007323924124812
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.000729330697632
81264882508:126488250:C:Trs2980869TIntronic-0.0007185540812235
116403124111:64031241:C:Trs35169799TPAVsPLCB30.0006967727378846
1272785731:27278573:T:Crs17360994CPAVsKDF10.0006561327231079
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0006235983073611
61609603596:160960359:T:Crs6919346CIntronicLPA-0.0006199756805125
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0006199472814191
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0006183344671201
8182724388:18272438:C:Trs4921914TOthers-0.0006144840024549
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.0006066019620352
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.0006061844157861
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.000601989296296
5558608665:55860866:G:Trs3936510TIntronic0.000578149642166
1111651152211:116511522:C:Trs519000TIntronic0.0005687468779036
71304333847:130433384:C:Trs4731702TOthers-0.0005683483200938
1629570301:62957030:G:Ars10889333AIntronicDOCK7-0.0005515233756387
174193137517:41931375:A:Grs12453522GPAVsCD300LG0.0005418518080062
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0005371415861616
434496524:3449652:G:Ars16844401APAVsHGFAC0.0005360890355397
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0005189725901931
61607663216:160766321:C:Trs540713TOthersSLC22A30.0005081588148042
5558618945:55861894:G:Ars9687846AIntronic0.0005047611225966
434460914:3446091:G:Trs3748034TPAVsHGFAC0.0004890244587902
167210809316:72108093:G:Ars2000999AIntronicHPR, TXNL4B0.0004887408935459
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.0004879970963103
4879967454:87996745:G:Ars17605615AIntronicAFF10.0004839014516041
1111663394711:116633947:G:Ars10488698APAVsBUD13-0.0004810596249827
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0004787840401233
204457650220:44576502:T:Crs7679CUTRPCIF10.0004743241478894
8198194398:19819439:A:Grs326GIntronicLPL-0.0004724042117573
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.000471989069789
109483964210:94839642:G:Ars2068888AOthersCYP26A1-0.0004714442006135
12302976591:230297659:C:Trs2281719TIntronicGALNT2-0.0004620451475394
122047375812:20473758:C:Ars7134375AOthers-0.0004590682923341
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0004526672668295
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.0004516179278145
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0004433605859688
632424101HLA-DRB3*0301HLA-DRB3*0301+PAVsHLA-DRB30.0004422577527993
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0004323132842646
632552086HLA-DRB1*1302HLA-DRB1*1302+PAVsHLA-DRB10.0004315322163744
194539571419:45395714:T:Crs157581CPCVsTOMM400.0004312014250569
176420828517:64208285:C:Grs1801690GPAVsAPOH-0.0004290003282908
51563960035:156396003:C:Trs12657266TOthers0.0004267562572021
1555056471:55505647:G:Trs11591147TPAVsPCSK9-0.0004263396198218
6326024306:32602430:C:Ars17211510AIntronicHLA-DQA10.0004170949529562
6437588736:43758873:G:Ars6905288AOthersVEGFA0.000415765330412
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0004138627618643
116157138211:61571382:G:Ars174549AUTRFADS10.0004052625526944
61610101506:161010150:C:Trs41272078TIntronicLPA-0.0004041038658566
5558067515:55806751:A:Grs459193GOthers0.000402841912216
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0004022248446798
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0003998899174007
8593392798:59339279:T:Crs7007181CIntronicUBXN2B-0.0003994633671825
8198244928:19824492:T:Crs13702CUTRLPL-0.000398832293421
7756150067:75615006:C:Trs1057868TPAVsPOR0.0003979316662076
X109689152X:109689152:A:Grs10521528GIntronicRTL9-0.000397022762345
8199430278:19943027:G:Ars13265868AIntronic-0.0003954343567262
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.0003945680195148
203914251620:39142516:G:Ars2207132AOthers0.0003938987716522
8106431648:10643164:C:Trs9657541TIntronicPINX1, SOX70.0003765760035953
91393689539:139368953:G:Ars3812594APAVsSEC16A0.0003763844924039
19719497619:7194976:A:Grs4804377GIntronicINSR-0.0003754179510878
21655485692:165548569:G:Ars10490694AIntronicCOBLL1-0.0003735220718282
61303937826:130393782:A:Grs7769599GIntronicL3MBTL3-0.0003639016883225
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P0.0003575477748031
9866172659:86617265:A:Grs1982151GPAVsRMI10.0003560098994578
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC1-0.0003537222001849
135104378813:51043788:C:Trs9316497TIntronicDLEU10.0003533439802364

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 14190 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References