Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Free Chol. in XL VLDL


Free Chol. in XL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelOriginal (incl. BLQ measurements)R20.063[0.059, 0.068]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.075[0.070, 0.080]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.090[0.085, 0.095]<1.0x10-300
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.018[0.016, 0.021]2.1x10-156
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.106[0.100, 0.112]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.076[0.071, 0.082]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.153[0.147, 0.160]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.018[0.015, 0.020]2.9x10-151
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.171[0.164, 0.178]<1.0x10-300
Non-British whiteCovariate-only modelOriginal (incl. BLQ measurements)R20.071[0.046, 0.096]2.4x10-26
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.066[0.042, 0.090]1.8x10-24
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.099[0.071, 0.128]9.0x10-37
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.014[0.002, 0.025]4.3x10-06
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.103[0.075, 0.132]3.1x10-38
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.067[0.043, 0.091]6.9x10-25
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.171[0.137, 0.205]2.2x10-64
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.013[0.002, 0.025]6.2x10-06
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.176[0.142, 0.211]1.5x10-66
South AsianCovariate-only modelOriginal (incl. BLQ measurements)R20.028[0.005, 0.052]4.4x10-06
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.073[0.037, 0.109]6.2x10-14
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.085[0.047, 0.123]4.8x10-16
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.012[-0.003, 0.028]2.4x10-03
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.093[0.053, 0.133]1.9x10-17
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.073[0.037, 0.109]7.7x10-14
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.093[0.054, 0.133]1.8x10-17
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.013[-0.003, 0.029]2.0x10-03
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.112[0.069, 0.154]9.3x10-21
AfricanCovariate-only modelOriginal (incl. BLQ measurements)R20.039[0.008, 0.069]2.5x10-06
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.033[0.004, 0.062]1.3x10-05
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.019[-0.003, 0.041]1.0x10-03
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.004[-0.006, 0.015]1.3x10-01
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.046[0.012, 0.079]2.8x10-07
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.033[0.004, 0.062]1.3x10-05
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.056[0.019, 0.092]1.3x10-08
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.004[-0.006, 0.013]1.5x10-01
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.081[0.038, 0.124]4.8x10-12
OthersCovariate-only modelOriginal (incl. BLQ measurements)R20.098[0.081, 0.115]2.4x10-98
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.061[0.048, 0.075]3.1x10-61
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.066[0.052, 0.080]7.5x10-66
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.025[0.016, 0.034]1.7x10-25
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.083[0.068, 0.099]2.0x10-83
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.063[0.049, 0.077]1.4x10-62
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.154[0.134, 0.174]2.8x10-158
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.024[0.015, 0.033]1.6x10-24
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.169[0.149, 0.190]2.9x10-175

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23493/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 13572 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0023450892297346
8198135298:19813529:A:Grs268GPAVsLPL0.0023298463477939
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.0020837259814933
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0018942199114479
8198197248:19819724:C:Grs328GPTVsLPL-0.0018096992079524
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0013872513913693
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0013497962105936
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0013278596458454
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.001298957777263
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.001055625014845
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0010389875316093
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0010157347445238
1111669229311:116692293:C:Ars12721043APAVsAPOA4-0.0009444007762098
194541445119:45414451:T:Crs439401COthersAPOC10.0008569917924977
2212315242:21231524:G:Ars676210APAVsAPOB-0.0008246223806012
1111666370711:116663707:G:Ars662799AOthersAPOA5-0.0008061074310329
61610173636:161017363:G:Ars73596816AIntronicLPA-0.0007358880788009
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0007159871435965
8198057088:19805708:G:Ars1801177APAVsLPL0.0007020029800563
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B2-0.0006435193083852
165699332416:56993324:C:Ars3764261AOthersCETP-0.0006360771604477
81265073898:126507389:C:Ars2954038AIntronic-0.000628109567663
1630270241:63027024:C:Trs4329540TIntronicDOCK70.0005596611929555
8198521348:19852134:G:Trs17411024TOthers0.0005503752136513
2212339722:21233972:T:Crs533617CPAVsAPOB-0.0004954386735384
2212252812:21225281:C:Trs1042034TPAVsAPOB0.0004920621487472
1555056471:55505647:G:Trs11591147TPAVsPCSK9-0.0004843455115255
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.000464210655115
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.0004561982341057
165701509116:57015091:G:Crs5880CPAVsCETP0.0004496877236175
61609536426:160953642:A:Grs41267809GPAVsLPA0.0004450987682583
61611070186:161107018:G:Ars9457997AOthers-0.0004099383730632
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.0004052044069449
22271014112:227101411:A:Grs2972144GOthers0.0003957740159001
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.0003929473139976
81264882508:126488250:C:Trs2980869TIntronic-0.0003885528192956
1272785731:27278573:T:Crs17360994CPAVsKDF10.0003766107173241
116403124111:64031241:C:Trs35169799TPAVsPLCB30.0003692134001689
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0003599409084556
8182724388:18272438:C:Trs4921914TOthers-0.0003503417118636
61609603596:160960359:T:Crs6919346CIntronicLPA-0.0003364917736089
5558608665:55860866:G:Trs3936510TIntronic0.0003340663623673
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0003279291971328
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.0003224747274365
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.000315155359559
1111651152211:116511522:C:Trs519000TIntronic0.0003101306197404
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0003046123467913
434496524:3449652:G:Ars16844401APAVsHGFAC0.0003010232421448
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0002983905558733
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0002970924505136
167210809316:72108093:G:Ars2000999AIntronicHPR, TXNL4B0.0002952495774641
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0002951098179333
174193137517:41931375:A:Grs12453522GPAVsCD300LG0.000292809767574
632424101HLA-DRB3*0301HLA-DRB3*0301+PAVsHLA-DRB30.0002911317502421
61607663216:160766321:C:Trs540713TOthersSLC22A30.0002860796053196
434460914:3446091:G:Trs3748034TPAVsHGFAC0.0002800720659691
203914251620:39142516:G:Ars2207132AOthers0.0002796630944216
71304333847:130433384:C:Trs4731702TOthers-0.0002788393395085
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.000276807774239
8198194398:19819439:A:Grs326GIntronicLPL-0.0002755036914738
4879967454:87996745:G:Ars17605615AIntronicAFF10.0002721121119741
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0002651629124457
1111663394711:116633947:G:Ars10488698APAVsBUD13-0.0002625029125022
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.0002590442686003
51563960035:156396003:C:Trs12657266TOthers0.0002585974248253
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.0002574593107858
109483964210:94839642:G:Ars2068888AOthersCYP26A1-0.0002570086892694
5558618945:55861894:G:Ars9687846AIntronic0.0002564334830982
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0002535223143112
1629570301:62957030:G:Ars10889333AIntronicDOCK7-0.0002503567273812
194539571419:45395714:T:Crs157581CPCVsTOMM400.0002441799157473
122047375812:20473758:C:Ars7134375AOthers-0.0002366893132945
204457650220:44576502:T:Crs7679CUTRPCIF10.0002365208071645
6437588736:43758873:G:Ars6905288AOthersVEGFA0.0002336506650287
8593392798:59339279:T:Crs7007181CIntronicUBXN2B-0.0002317449676054
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0002277615685131
7756150067:75615006:C:Trs1057868TPAVsPOR0.0002277199456206
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.00022653179933
X109689152X:109689152:A:Grs10521528GIntronicRTL9-0.0002244901844099
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.0002241074678754
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0002236191768942
12302976591:230297659:C:Trs2281719TIntronicGALNT2-0.000222202484236
5558067515:55806751:A:Grs459193GOthers0.0002220568529054
165700659016:57006590:C:Trs7499892TIntronicCETP0.0002204394064696
6326024306:32602430:C:Ars17211510AIntronicHLA-DQA10.000220239386954
8199430278:19943027:G:Ars13265868AIntronic-0.0002192647529573
2212883212:21288321:A:Grs562338GOthers0.00021611257325
8198244928:19824492:T:Crs13702CUTRLPL-0.0002138118619059
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0002112561822415
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P0.0002089072758657
61610101506:161010150:C:Trs41272078TIntronicLPA-0.0002089062995472
116157138211:61571382:G:Ars174549AUTRFADS10.0002087980290509
8106431648:10643164:C:Trs9657541TIntronicPINX1, SOX70.0002053811883816
632552086HLA-DRB1*1302HLA-DRB1*1302+PAVsHLA-DRB10.0002041502033614
135104378813:51043788:C:Trs9316497TIntronicDLEU10.0002039341065611
11098213071:109821307:G:Trs583104TOthersCELSR2, PSRC10.0002038485667245
176420828517:64208285:C:Grs1801690GPAVsAPOH-0.0002011768617291
21655485692:165548569:G:Ars10490694AIntronicCOBLL1-0.0002010572777022
61303937826:130393782:A:Grs7769599GIntronicL3MBTL3-0.0001999723908379
81264817478:126481747:A:Grs2980875GIntronic-0.0001956731957458

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 13572 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References