Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: CE to Tot. Lipids in CMs and XXL VLDL %


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.010[0.008, 0.011]9.1x10-79
white BritishGenotype-only modelBLQ (derived)R20.003[0.002, 0.004]7.3x10-26
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.029[0.026, 0.033]1.1x10-241
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.009[0.007, 0.010]4.7x10-71
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.031[0.028, 0.034]1.9x10-254
white BritishFull model (covariates and genotypes)BLQ (derived)R20.004[0.003, 0.006]3.0x10-37
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.039[0.035, 0.043]1.7x10-308
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.010[0.008, 0.012]1.8x10-79
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.041[0.037, 0.045]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.004[-0.002, 0.011]1.2x10-02
Non-British whiteGenotype-only modelBLQ (derived)R20.001[-0.002, 0.005]1.7x10-01
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.026[0.010, 0.042]4.9x10-10
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.001[-0.002, 0.005]1.6x10-01
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.030[0.013, 0.047]2.1x10-11
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.002[-0.002, 0.007]8.4x10-02
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.028[0.012, 0.045]8.0x10-11
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.004[-0.002, 0.011]1.2x10-02
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.032[0.015, 0.050]3.5x10-12
South AsianCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.006[-0.005, 0.017]3.6x10-02
South AsianGenotype-only modelBLQ (derived)R20.003[-0.005, 0.010]1.7x10-01
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.015[-0.002, 0.032]9.5x10-04
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.007[-0.005, 0.019]2.5x10-02
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.013[-0.003, 0.028]2.4x10-03
South AsianFull model (covariates and genotypes)BLQ (derived)R20.003[-0.005, 0.011]1.2x10-01
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.020[0.000, 0.040]1.1x10-04
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.007[-0.005, 0.018]2.9x10-02
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.018[-0.001, 0.037]2.7x10-04
AfricanCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.013[-0.005, 0.032]1.2x10-02
AfricanGenotype-only modelBLQ (derived)R20.002[-0.005, 0.008]3.8x10-01
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.013[-0.005, 0.032]1.3x10-02
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.002[-0.005, 0.008]3.9x10-01
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.011[-0.006, 0.029]2.1x10-02
AfricanFull model (covariates and genotypes)BLQ (derived)R20.010[-0.006, 0.026]3.0x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.000[-0.001, 0.002]8.5x10-01
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.014[-0.005, 0.033]1.0x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.000[-0.000, 0.000]9.8x10-01
OthersCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.020[0.012, 0.028]1.4x10-19
OthersGenotype-only modelBLQ (derived)R20.000[-0.001, 0.002]1.6x10-01
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.026[0.017, 0.036]1.5x10-25
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.003[-0.000, 0.007]2.5x10-04
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.026[0.016, 0.035]5.4x10-25
OthersFull model (covariates and genotypes)BLQ (derived)R20.015[0.008, 0.023]1.1x10-15
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.040[0.029, 0.052]1.0x10-38
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.018[0.010, 0.026]7.1x10-18
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.042[0.030, 0.053]5.0x10-40

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23581/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 2636 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA1.58374127200169
61609611376:160961137:T:Crs3798220CPAVsLPA1.52079082740366
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.564522700246732
176421058017:64210580:A:Crs1801689CPAVsAPOH0.539031700002355
194541564019:45415640:G:Ars445925AOthersAPOC1-0.514829862123409
61610173636:161017363:G:Ars73596816AIntronicLPA0.350859023577446
1555056471:55505647:G:Trs11591147TPAVsPCSK9-0.342762724496054
165700659016:57006590:C:Trs7499892TIntronicCETP0.288202168027826
91361538759:136153875:C:Trs651007TOthersABO0.285438783983868
61610688916:161068891:G:Ars9295130AIntronicLPA-0.276964064534584
61610060776:161006077:C:Trs41272114TPTVsLPA-0.258423165619638
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.232413413394119
61609603596:160960359:T:Crs6919346CIntronicLPA0.22888599054021
165699332416:56993324:C:Ars3764261AOthersCETP-0.213942595010907
204454504820:44545048:C:Trs4810479TOthersPLTP-0.19287040066375
8198197248:19819724:C:Grs328GPTVsLPL0.188528456506699
224432472722:44324727:C:Grs738409GPAVsPNPLA30.187129379130887
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.183117718384509
61609215666:160921566:T:Grs9457930GIntronicLPAL20.181385144311694
61610995036:161099503:G:Ars5014650AOthers0.169592449153102
2212883212:21288321:A:Grs562338GOthers0.169133224728365
165699071616:56990716:C:Ars247617AOthers-0.169058794663245
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.16597643998667
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.162053400875409
194538959619:45389596:G:Ars7254892AIntronicNECTIN2-0.158187492828332
2212639002:21263900:G:Ars1367117APAVsAPOB0.149125086591274
194541445119:45414451:T:Crs439401COthersAPOC1-0.146148145115656
2277309402:27730940:T:Crs1260326CPAVsGCKR0.146058117652212
61611379906:161137990:G:Ars783147AIntronicPLG-0.144320952182616
31863377133:186337713:T:Crs4917CPAVsAHSG-0.143375637573807
11098185301:109818530:C:Trs646776TOthersCELSR2, PSRC10.136888695141552
11098171921:109817192:A:Grs7528419GUTRCELSR2-0.134111586543836
149484484314:94844843:T:Grs1303GPAVsSERPINA10.133998925405266
1111664891711:116648917:G:Crs964184CUTRZPR10.125748862008376
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.11851844321933
2213890192:21389019:A:Grs538928GOthers0.111938550947639
194542294619:45422946:A:Grs4420638GOthersAPOC10.110511368866673
81264844638:126484463:C:Trs2954025TIntronic0.110375811012008
1111665756111:116657561:C:Trs3741298TIntronicZPR10.106045783745811
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.10574309695701
204455401520:44554015:T:Crs6065906COthers0.0965025543044615
167214417416:72144174:T:Crs9302635CIntronicDHX380.0956239259632614
165701509116:57015091:G:Crs5880CPAVsCETP0.0954579317824664
91393689539:139368953:G:Ars3812594APAVsSEC16A-0.0876431753422724
41554917594:155491759:G:Ars4220APAVsFGB-0.0867899516378135
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0846692152114597
172669486117:26694861:G:Ars704APAVsVTN0.0843234547261577
139523182513:95231825:G:Ars2275647AOthersTGDS-0.0819950767006236
7259975367:25997536:A:Grs4719841GOthers-0.0797069496422576
174545189417:45451894:G:Ars4968318APAVsEFCAB130.0796454332031481
194543255719:45432557:G:Crs7259004CIntronicAPOC1P1-0.0782556625532876
174701465117:47014651:CT:Crs5820737CPTVsSNF80.0756897231529255
204463969220:44639692:G:Trs2274755TPAVsMMP90.073101807083973
61611085366:161108536:C:Trs6935921TOthers0.0729926532804553
157717615815:77176158:T:Crs3812908CPTVsSCAPER-0.0725141946328814
61371350046:137135004:T:Crs9494573COthers-0.0710727698491993
194549630319:45496303:T:Crs9193CPAVsCLPTM10.0702484122097483
1438864941:43886494:C:Trs2782643TPAVsSZT2-0.0692999450200899
711022417:1102241:A:Grs12701823GIntronicC7orf50-0.0692122213413415
165701609216:57016092:G:Ars5882APAVsCETP0.0654842901657191
61613782306:161378230:C:Trs1149349TIntronic-0.0635563270185903
223746959022:37469590:C:Trs387907018TPAVsTMPRSS6-0.0633788736509928
21816256642:181625664:A:Grs4362518GOthers0.0632832707292397
31410470723:141047072:C:Ars6795197AIntronicZBTB38-0.0628861121967064
142488388714:24883887:G:Ars8017377APAVsNYNRIN0.0627376078709804
4410158994:41015899:C:Trs4861358TPAVsAPBB2-0.0625147502490329
154362226515:43622265:C:Ars3742970APAVsLCMT2-0.0623970283602867
166442239316:64422393:C:Ars9931897AIntronic0.0620307669099919
184259507618:42595076:G:Ars7233512AIntronicSETBP1-0.0617215443040883
177382720517:73827205:T:Crs1135688CPAVsUNC13D-0.0597714631887707
204453465120:44534651:G:Ars6065904AIntronicPLTP0.0585643359802121
71304374767:130437476:G:Ars7810507AOthers-0.0580220684303846
168029705516:80297055:G:Ars12934881AIntronic-0.0574099261444655
114626490611:46264906:A:Grs7926726GOthers0.0573654427886789
17732913417:7329134:G:Ars72842820APAVsSPEM2-0.0568247771910952
2710434612:71043461:C:Trs722896TPAVsCLEC4F-0.0560739068066065
195153513019:51535130:A:Grs3745540GPTVsKLK12-0.0560670769943594
51806869585:180686958:C:Trs943957TIntronicTRIM520.0555594942468197
18962305218:9623052:G:Ars589559AOthersRNU6-903P-0.0545784479591143
8198783568:19878356:T:Crs7013777COthers0.0544034891743876
61610101506:161010150:C:Trs41272078TIntronicLPA0.0543592509566263
1631181961:63118196:A:Crs10889353CIntronicDOCK70.0541620292702024
194566245919:45662459:G:Ars8109620AIntronicMARK4, NKPD1-0.0538178990126561
176420828517:64208285:C:Grs1801690GPAVsAPOH0.0538036070862703
194585491919:45854919:T:Grs13181GPAVsERCC2-0.0535940542920068
6290692996:29069299:C:Trs2394517TPTVsOR2J1-0.0531805861504817
61611522406:161152240:G:Ars4252125APAVsPLG-0.0528814037156344
222520972422:25209724:T:Crs5996763CPTVsSGSM1-0.0526288766016514
11563141041:156314104:T:Crs2025577CIntronicCCT3, TSACC0.0524878228080671
128974482612:89744826:A:Grs808820GPTVsDUSP6-0.052487081066752
5784362115:78436211:C:Trs1915706TIntronicDMGDH0.0522313659794732
122132973812:21329738:A:Grs2306283GPAVsSLCO1B1-0.0519110105238102
1630208161:63020816:C:Ars10159255AIntronicDOCK70.0518627790522261
133287769613:32877696:G:Ars9590896AOthersZAR1L0.0515542487304467
22408515232:240851523:A:Grs11686460GIntronicNDUFA100.0510745869157112
2212328042:21232804:G:Ars1041968APCVsAPOB0.0510255847917576
8485766658:48576665:T:Crs4873546CIntronicSPIDR0.0508702096509378
7356785627:35678562:C:Trs17678728TIntronicHERPUD2-0.0508454947343097
175627106017:56271060:T:Crs11079340CPAVsEPX0.0503519384867358
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.0501991284268723

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 2636 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References