Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Free Chol. to Tot. Lipids in CMs and XXL VLDL %


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.022[0.019, 0.025]9.8x10-180
white BritishGenotype-only modelBLQ (derived)R20.012[0.009, 0.014]1.4x10-95
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.033[0.030, 0.037]6.7x10-272
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.018[0.015, 0.020]1.3x10-145
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.036[0.032, 0.039]8.5x10-294
white BritishFull model (covariates and genotypes)BLQ (derived)R20.005[0.004, 0.006]9.7x10-42
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.049[0.045, 0.054]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.022[0.019, 0.025]7.7x10-182
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.058[0.054, 0.063]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.028[0.012, 0.045]9.0x10-11
Non-British whiteGenotype-only modelBLQ (derived)R20.004[-0.002, 0.011]1.4x10-02
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.017[0.004, 0.030]4.2x10-07
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.008[-0.001, 0.017]5.2x10-04
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.025[0.010, 0.041]9.0x10-10
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.013[0.002, 0.024]1.1x10-05
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.045[0.025, 0.065]2.5x10-16
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.029[0.012, 0.045]6.8x10-11
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.053[0.031, 0.075]3.4x10-19
South AsianCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.012[-0.003, 0.028]2.4x10-03
South AsianGenotype-only modelBLQ (derived)R20.008[-0.005, 0.021]1.3x10-02
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.022[0.001, 0.043]4.9x10-05
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.009[-0.005, 0.022]1.2x10-02
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.015[-0.002, 0.032]8.9x10-04
South AsianFull model (covariates and genotypes)BLQ (derived)R20.003[-0.005, 0.011]1.4x10-01
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.026[0.003, 0.048]1.3x10-05
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.012[-0.003, 0.028]2.9x10-03
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.026[0.003, 0.048]1.2x10-05
AfricanCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.008[-0.006, 0.023]5.1x10-02
AfricanGenotype-only modelBLQ (derived)R20.000[-0.000, 0.000]9.8x10-01
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.019[-0.003, 0.042]2.6x10-03
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.000[-0.001, 0.001]8.8x10-01
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.023[-0.001, 0.047]9.7x10-04
AfricanFull model (covariates and genotypes)BLQ (derived)R20.007[-0.007, 0.021]6.3x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.001[-0.004, 0.006]5.0x10-01
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.009[-0.006, 0.024]4.2x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.000[-0.003, 0.004]6.3x10-01
OthersCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.024[0.015, 0.033]1.0x10-23
OthersGenotype-only modelBLQ (derived)R20.002[-0.001, 0.004]6.5x10-03
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.019[0.011, 0.027]1.1x10-18
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.004[0.001, 0.008]1.7x10-05
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.020[0.012, 0.028]9.8x10-20
OthersFull model (covariates and genotypes)BLQ (derived)R20.014[0.007, 0.021]2.1x10-14
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.040[0.029, 0.052]1.5x10-38
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.024[0.015, 0.033]2.7x10-23
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.044[0.032, 0.056]2.2x10-42

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23582/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 3252 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61609611376:160961137:T:Crs3798220CPAVsLPA0.965217316854598
61610101186:161010118:A:Grs10455872GIntronicLPA0.933363115256547
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.465317879943097
61610173636:161017363:G:Ars73596816AIntronicLPA0.307820110512665
176421058017:64210580:A:Crs1801689CPAVsAPOH0.290655955263143
61610060776:161006077:C:Trs41272114TPTVsLPA-0.226243113003892
61609603596:160960359:T:Crs6919346CIntronicLPA0.187845273598064
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.153513628818227
91361538759:136153875:C:Trs651007TOthersABO0.136711741835877
61610699416:161069941:G:Ars10945682AIntronicLPA-0.135076863946272
1111664891711:116648917:G:Crs964184CUTRZPR10.133424100201931
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.129392851883447
194541445119:45414451:T:Crs439401COthersAPOC1-0.126696816138688
8198197248:19819724:C:Grs328GPTVsLPL0.11286183492095
61609215666:160921566:T:Grs9457930GIntronicLPAL20.109313824648745
61609536426:160953642:A:Grs41267809GPAVsLPA-0.10484408525878
204454504820:44545048:C:Trs4810479TOthersPLTP-0.104068500164779
61611070186:161107018:G:Ars9457997AOthers0.0986545876216089
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0982052323167987
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0916953628157277
2277309402:27730940:T:Crs1260326CPAVsGCKR0.0799451829627512
81264882508:126488250:C:Trs2980869TIntronic0.0792832145221172
8198135298:19813529:A:Grs268GPAVsLPL-0.0756071963700274
61610101506:161010150:C:Trs41272078TIntronicLPA0.0745116278311792
224432472722:44324727:C:Grs738409GPAVsPNPLA30.0734945479582647
61606088046:160608804:A:Crs16891156CIntronicSLC22A20.0725184540834554
204455401520:44554015:T:Crs6065906COthers0.0705405233382781
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.0692633873965172
165699332416:56993324:C:Ars3764261AOthersCETP-0.0666797864660824
1111672863011:116728630:G:Crs12225230CPAVsSIK30.0645925736570807
2212949752:21294975:G:Ars541041AOthers0.0639644268178199
61611379906:161137990:G:Ars783147AIntronicPLG-0.0589486421689433
116160481411:61604814:C:Ars174577AIntronicFADS2-0.0585282479386088
176420828517:64208285:C:Grs1801690GPAVsAPOH0.0583460723754052
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0563846187193453
3524094213:52409421:A:Grs56002041GPAVsDNAH10.0552236556330527
1629226601:62922660:G:Ars4350231AIntronicDOCK70.0537657534415808
61609121306:160912130:T:Crs9355805CIntronicLPAL20.0530301945471325
61611085366:161108536:C:Trs6935921TOthers0.0488843426277862
155854464415:58544644:G:Ars12594571AIntronicALDH1A20.0485169322862177
191941309219:19413092:C:Trs17751061TPAVsSUGP10.0478013237147788
61611522406:161152240:G:Ars4252125APAVsPLG-0.046575979500577
165700659016:57006590:C:Trs7499892TIntronicCETP0.0463988182044074
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK50.0456858975518627
11507275391:150727539:G:Ars2230061APAVsCTSS-0.0436939429774301
61610074966:161007496:G:Crs7765781CPAVsLPA-0.0430332290890511
61608334686:160833468:T:Grs7745775GIntronicSLC22A30.042730109964494
139503474913:95034749:G:Ars1535692APAVsGPC6-0.0424936196522374
177639543017:76395430:C:Trs2292642TPAVsPGS10.041271130059209
1011416927610:114169276:A:Grs3736946GPAVsACSL50.0402817808827249
51563902975:156390297:T:Crs6882076COthersTIMD4-0.039744570232133
61616724436:161672443:T:Grs1884480GIntronicAGPAT40.0392351766333425
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0389782154042491
174701465117:47014651:CT:Crs5820737CPTVsSNF80.0387900749060596
3123931253:12393125:C:Grs1801282GPAVsPPARG0.0382111013979775
139523182513:95231825:G:Ars2275647AOthersTGDS-0.0378439471987959
2156746862:15674686:T:Crs13029846CPAVsNBAS-0.0376604671317295
191828594419:18285944:G:Ars11554159APAVsIFI30-0.0375697617992865
6995529216:99552921:G:Ars12213066AOthers-0.0368246047557596
7281725867:28172586:T:Crs917115CIntronicJAZF1-0.0366040317634285
71503251757:150325175:C:Trs13234724TPAVsGIMAP6-0.0359588894068228
194539571419:45395714:T:Crs157581CPCVsTOMM40-0.035674721240482
166974514516:69745145:G:Ars1800566APAVsNQO1-0.0348267779576753
51806869585:180686958:C:Trs943957TIntronicTRIM520.034592762782577
18988793618:9887936:G:Crs17805544CPAVsTXNDC2-0.0343389191485946
857458528:5745852:A:Grs2840399GOthers-0.0338251254871266
71396951447:139695144:A:Grs7795996GIntronicTBXAS10.0336523386821035
165699071616:56990716:C:Ars247617AOthers-0.0331567758658112
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.032630674061836
8662379608:66237960:G:Ars12546368AOthers-0.0325322197688166
12302976591:230297659:C:Trs2281719TIntronicGALNT20.0324496790495488
4449460924:44946092:A:Crs963694CPTVsPRDX4P1-0.0320644906048921
4260161564:26016156:C:Trs12647908TOthers0.0318000436513286
155862439615:58624396:T:Crs11637094CIntronicALDH1A2-0.0314167954223509
7951620107:95162010:A:Grs2375019GIntronicASB40.031258705075476
194585491919:45854919:T:Grs13181GPAVsERCC2-0.030969049193914
7259975367:25997536:A:Grs4719841GOthers-0.0307633957078496
204453465120:44534651:G:Ars6065904AIntronicPLTP0.0305061307725889
1111665756111:116657561:C:Trs3741298TIntronicZPR10.0303810512628897
157029271015:70292710:C:Trs4777218TOthers0.0301612078989764
137407613813:74076138:A:Grs3904775GIntronicLINC00393-0.0296788280331694
126197280612:61972806:T:Crs931872COthers0.0295052946390565
61602391016:160239101:G:Ars876381AIntronicPNLDC10.0289763356910067
161513197416:15131974:G:Trs1136001TPAVsNTAN1-0.0289595633146208
1213014473612:130144736:A:Grs10773692GIntronicTMEM132D-0.0285573692593549
171812192617:18121926:T:Crs1378601COthers0.0285300859512633
9102538529:10253852:A:Grs4143458GIntronicPTPRD-0.0285184707945713
155860072215:58600722:C:Grs413458GIntronicALDH1A20.0284639890661441
4178299904:17829990:G:Crs3795243CPAVsNCAPG-0.0283511803669772
3458140943:45814094:G:Ars17279437APAVsSLC6A20-0.0282085978877981
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.0281530365621918
125321698912:53216989:G:Ars17688627APAVsKRT790.0277567687549859
157774719015:77747190:A:Grs7178572GIntronicHMG20A-0.0275196832616111
206233740620:62337406:A:Grs6011040GIntronicARFRP1-0.0274390445890675
224311247522:43112475:C:Trs738526TIntronicA4GALT0.0272520377368871
159430007315:94300073:G:Ars4777698AIntronic0.0272189018386354
81443013468:144301346:G:Ars7822123AOthersGPIHBP1-0.0271710031249665
155858810415:58588104:G:Ars4775027AIntronicALDH1A2-0.0269643656661485
7983134347:98313434:T:Crs7802589COthers0.0263494153246669
91393689539:139368953:G:Ars3812594APAVsSEC16A-0.0259239105446666

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 3252 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References