Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: PLs to Tot. Lipids in XL VLDL %


PLs to Tot. Lipids in XL VLDL % iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.021[0.018, 0.024]2.3x10-175
white BritishGenotype-only modelBLQ (derived)R20.019[0.016, 0.022]1.0x10-159
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.030[0.027, 0.034]4.4x10-256
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.023[0.020, 0.026]6.7x10-197
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.037[0.033, 0.041]1.7x10-308
white BritishFull model (covariates and genotypes)BLQ (derived)R20.040[0.036, 0.044]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.047[0.043, 0.052]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.022[0.019, 0.025]3.6x10-183
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.058[0.054, 0.063]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.043[0.023, 0.062]4.1x10-16
Non-British whiteGenotype-only modelBLQ (derived)R20.012[0.001, 0.023]1.5x10-05
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.028[0.012, 0.045]4.2x10-11
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.019[0.006, 0.033]5.7x10-08
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.023[0.009, 0.038]1.9x10-09
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.050[0.029, 0.071]9.1x10-19
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.069[0.044, 0.093]2.4x10-25
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.044[0.024, 0.064]1.6x10-16
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.062[0.039, 0.085]6.1x10-23
South AsianCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.010[-0.004, 0.024]7.4x10-03
South AsianGenotype-only modelBLQ (derived)R20.014[-0.003, 0.030]1.4x10-03
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.027[0.004, 0.050]7.6x10-06
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.012[-0.004, 0.027]3.5x10-03
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.021[0.000, 0.041]9.1x10-05
South AsianFull model (covariates and genotypes)BLQ (derived)R20.022[0.001, 0.043]5.0x10-05
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.026[0.003, 0.048]1.3x10-05
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.010[-0.004, 0.024]7.6x10-03
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.027[0.004, 0.050]7.6x10-06
AfricanCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.010[-0.006, 0.026]2.1x10-02
AfricanGenotype-only modelBLQ (derived)R20.003[-0.006, 0.013]1.7x10-01
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.018[-0.003, 0.040]1.5x10-03
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.009[-0.006, 0.024]2.8x10-02
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.021[-0.002, 0.044]7.1x10-04
AfricanFull model (covariates and genotypes)BLQ (derived)R20.012[-0.006, 0.030]1.0x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.021[-0.002, 0.044]7.1x10-04
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.010[-0.006, 0.026]2.2x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.028[0.001, 0.054]9.3x10-05
OthersCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.035[0.024, 0.046]8.5x10-35
OthersGenotype-only modelBLQ (derived)R20.013[0.006, 0.019]2.3x10-13
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.020[0.011, 0.028]5.5x10-20
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.011[0.005, 0.017]8.9x10-12
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.023[0.014, 0.032]1.3x10-23
OthersFull model (covariates and genotypes)BLQ (derived)R20.042[0.031, 0.054]6.2x10-42
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.052[0.039, 0.065]2.4x10-51
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.035[0.024, 0.046]1.1x10-34
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.055[0.042, 0.069]1.2x10-54

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23584/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 4867 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
1555056471:55505647:G:Trs11591147TPAVsPCSK9-0.272211469922621
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.212571357028575
1111664891711:116648917:G:Crs964184CUTRZPR1-0.202228499499074
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.174269130918519
1111669229311:116692293:C:Ars12721043APAVsAPOA4-0.16901162632297
8198197248:19819724:C:Grs328GPTVsLPL-0.167955895025122
2212315242:21231524:G:Ars676210APAVsAPOB-0.155191517932321
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.135191292616232
165699332416:56993324:C:Ars3764261AOthersCETP-0.1328605336464
194542294619:45422946:A:Grs4420638GOthersAPOC10.131834302363106
165700659016:57006590:C:Trs7499892TIntronicCETP0.128502437673637
8198135298:19813529:A:Grs268GPAVsLPL0.126101327768624
165700735316:57007353:C:Trs5883TPCVsCETP-0.115977311214025
165701509116:57015091:G:Crs5880CPAVsCETP0.110176012539853
165699071616:56990716:C:Ars247617AOthers-0.106396167092797
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0978389058998181
2212639002:21263900:G:Ars1367117APAVsAPOB0.0725982048330283
2212949752:21294975:G:Ars541041AOthers0.0666609339771405
8198246678:19824667:C:Trs15285TUTRLPL-0.0639241299867046
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0561659782189145
167211400216:72114002:C:Trs217181TIntronicTXNL4B-0.0545933244690119
194541445119:45414451:T:Crs439401COthersAPOC10.0544556185829009
194541564019:45415640:G:Ars445925AOthersAPOC1-0.0541069556309721
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.0536893903370705
81264817478:126481747:A:Grs2980875GIntronic-0.0516216751548312
1272785731:27278573:T:Crs17360994CPAVsKDF10.0508176669540311
5746565395:74656539:T:Crs12916CUTRHMGCR0.0502534727684261
194539526619:45395266:G:Ars157580AIntronicTOMM400.0472243772093033
166797632016:67976320:A:Trs4986970TPAVsLCAT0.0471767139461512
2212339722:21233972:T:Crs533617CPAVsAPOB-0.0464376528768876
11098171921:109817192:A:Grs7528419GUTRCELSR2-0.0458518222538418
8198244928:19824492:T:Crs13702CUTRLPL-0.0451888997463772
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0449190392080765
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0447744808831347
9153047829:15304782:C:Ars686030AIntronicTTC39B-0.0444307075961345
114727025511:47270255:C:Trs2167079TPAVsACP2-0.0440857060919524
61605142836:160514283:A:Grs80254170GOthers0.043338818337597
51563916285:156391628:T:Crs6874202COthersTIMD40.0427736458962857
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.0399724115442028
2440744312:44074431:C:Trs4245791TIntronicABCG8-0.0394984391664239
191123120319:11231203:G:Ars72658867APAVsLDLR-0.0390508948907064
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.038531914693886
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0363251270860055
5558618945:55861894:G:Ars9687846AIntronic0.0356156875258175
194920667419:49206674:G:Ars601338APTVsFUT20.0341687149794652
1629400971:62940097:G:Ars1979722AIntronicDOCK7-0.0332825596066282
31863377133:186337713:T:Crs4917CPAVsAHSG0.0329510968680443
81076887338:107688733:T:Crs776951CIntronicOXR1-0.0324645712840508
11509406251:150940625:T:Grs267738GPAVsCERS2-0.0319231343540721
165698513916:56985139:A:Grs9989419GOthers-0.0311107075005968
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0307558671036969
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0304826787938861
1211715995412:117159954:G:Ars2644692AIntronicSPRING1-0.029566858626859
194540883619:45408836:T:Grs405509GOthersAPOE-0.0293225133002771
11098215111:109821511:T:Grs602633GOthersCELSR2, PSRC10.0288808686634572
134089500613:40895006:A:Crs4943767COthers-0.0288373516695583
166792004916:67920049:G:Ars73594554APAVsNRN1L-0.028822278464415
1555211091:55521109:G:Ars693668AIntronicPCSK90.028775300350468
191121656119:11216561:A:Crs12983082CIntronicLDLR0.0287541873799856
1630270241:63027024:C:Trs4329540TIntronicDOCK70.0286286533348086
7446151867:44615186:T:Crs217369COthersDDX56-0.0283913538640157
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0277574558567746
7756150067:75615006:C:Trs1057868TPAVsPOR0.0273549771055141
11821626771:182162677:C:Trs1689802TIntronic0.0271383791905341
11990380431:199038043:T:Crs10919619CIntronic-0.0266323243115103
165701700216:57017002:T:Grs9923854GIntronicCETP-0.026131531348293
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.025868949576377
165701609216:57016092:G:Ars5882APAVsCETP0.0253586341551314
31360694723:136069472:G:Trs667920TIntronicSTAG10.0251589350334577
1212426568712:124265687:T:Crs11057353CPAVsDNAH10-0.0249093609285502
176682594017:66825940:G:Ars8071366AOthers0.0248197705143522
191127584219:11275842:G:Ars3185010AUTRKANK20.0242473101857857
81265073898:126507389:C:Ars2954038AIntronic-0.0240109174100441
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.0235598880911761
176715017617:67150176:T:Crs2886232CIntronicABCA10-0.0235565453126358
17757947217:7579472:G:Crs1042522CPAVsTP53-0.0235360385533007
149163653214:91636532:C:Trs4900072TPTVsDGLUCY-0.0234200899312203
81218750838:121875083:G:Ars7836397AOthers0.0230676870920566
6326262726:32626272:C:Ars9273363AOthersHLA-DQB1-AS1-0.0229991571431266
176730444717:67304447:C:Trs11544715TPAVsABCA50.0228231749862654
1631181961:63118196:A:Crs10889353CIntronicDOCK7-0.0227151095357303
7992705397:99270539:C:Trs776746TPTVsCYP3A50.0226983909341886
6342143226:34214322:C:Grs1150781GPAVsSMIM29-0.0220894413459905
8198057088:19805708:G:Ars1801177APAVsLPL0.0219122738639608
4880522194:88052219:T:Crs342467CPAVsAFF10.0218276063853583
149484484314:94844843:T:Grs1303GPAVsSERPINA1-0.0217226383383161
1111663994111:116639941:A:Grs1263149GIntronicBUD13-0.021501803477195
116627223711:66272237:G:Ars2305535APAVsDPP3-0.0214379984303517
7216073527:21607352:T:Crs12670798CIntronicDNAH110.0213807082128269
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.0213073662113778
184072654618:40726546:T:Crs1518154COthers-0.0211766631071826
71425729087:142572908:T:Crs4987667CPTVsTRPV60.0210841711145262
8182627238:18262723:T:Grs1495745GOthersNAT2-0.0210411901983099
8594342308:59434230:G:Ars7460495AOthers-0.0210221806948634
156334562215:63345622:G:Ars7170462AIntronicTPM10.0209626430966429
91361538759:136153875:C:Trs651007TOthersABO0.0204636756009027
61605608456:160560845:A:Grs628031GPAVsSLC22A1-0.0203133231608938
194627597619:46275976:G:Crs527221CPAVsDMPK-0.0203123866626868
61605788606:160578860:T:Crs1564348CIntronicSLC22A10.0202862830924953
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P0.0202033430764305

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 4867 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References