Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Free Chol. to Tot. Lipids in XL VLDL %


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.050[0.046, 0.054]<1.0x10-300
white BritishGenotype-only modelBLQ (derived)R20.009[0.007, 0.011]5.2x10-78
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.059[0.055, 0.064]<1.0x10-300
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.016[0.014, 0.019]1.6x10-138
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.058[0.053, 0.063]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (derived)R20.005[0.004, 0.007]2.9x10-47
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.108[0.102, 0.114]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.049[0.045, 0.053]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.109[0.103, 0.114]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.056[0.034, 0.079]5.7x10-21
Non-British whiteGenotype-only modelBLQ (derived)R20.005[-0.002, 0.012]6.4x10-03
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.059[0.036, 0.082]5.7x10-22
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.018[0.005, 0.032]1.1x10-07
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.054[0.032, 0.076]3.4x10-20
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.010[0.000, 0.020]9.9x10-05
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.115[0.085, 0.144]4.5x10-42
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.056[0.034, 0.078]9.1x10-21
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.111[0.082, 0.141]8.4x10-41
South AsianCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.014[-0.003, 0.031]1.2x10-03
South AsianGenotype-only modelBLQ (derived)R20.008[-0.005, 0.020]1.9x10-02
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.054[0.022, 0.085]1.7x10-10
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.022[0.001, 0.043]5.4x10-05
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.049[0.019, 0.079]1.2x10-09
South AsianFull model (covariates and genotypes)BLQ (derived)R20.000[-0.002, 0.003]6.7x10-01
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.058[0.025, 0.090]3.8x10-11
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.014[-0.003, 0.031]1.1x10-03
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.061[0.028, 0.094]1.1x10-11
AfricanCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.010[-0.006, 0.026]2.0x10-02
AfricanGenotype-only modelBLQ (derived)R20.006[-0.007, 0.018]7.7x10-02
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.032[0.004, 0.060]2.7x10-05
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.006[-0.007, 0.018]7.9x10-02
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.027[0.001, 0.053]1.2x10-04
AfricanFull model (covariates and genotypes)BLQ (derived)R20.000[-0.002, 0.003]7.1x10-01
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.035[0.005, 0.064]1.2x10-05
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.009[-0.006, 0.025]2.4x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.035[0.006, 0.065]1.0x10-05
OthersCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.044[0.032, 0.056]9.0x10-44
OthersGenotype-only modelBLQ (derived)R20.010[0.004, 0.016]4.5x10-11
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.065[0.051, 0.079]3.1x10-64
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.016[0.009, 0.024]4.4x10-17
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.066[0.052, 0.080]3.6x10-65
OthersFull model (covariates and genotypes)BLQ (derived)R20.004[0.000, 0.008]1.5x10-05
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.102[0.085, 0.119]4.9x10-101
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.041[0.030, 0.053]6.5x10-41
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.105[0.088, 0.122]2.0x10-104

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23587/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 9009 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
1555056471:55505647:G:Trs11591147TPAVsPCSK9-0.255267583980172
61610101186:161010118:A:Grs10455872GIntronicLPA0.216250022384258
61609611376:160961137:T:Crs3798220CPAVsLPA0.213932991804862
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.163624582638813
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.137217083217456
194541564019:45415640:G:Ars445925AOthersAPOC1-0.130783351475946
2277309402:27730940:T:Crs1260326CPAVsGCKR0.105644493906277
176421058017:64210580:A:Crs1801689CPAVsAPOH0.0962675486519828
8198197248:19819724:C:Grs328GPTVsLPL0.08773640118738
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.0830064626480431
1111664891711:116648917:G:Crs964184CUTRZPR10.0788063186645825
204455401520:44554015:T:Crs6065906COthers-0.0652245300154079
194542294619:45422946:A:Grs4420638GOthersAPOC10.0644064016797112
2212639002:21263900:G:Ars1367117APAVsAPOB0.0593756981548715
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.056690113864896
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS2-0.0564397182136182
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.0504882130053305
8198135298:19813529:A:Grs268GPAVsLPL-0.0500896993377552
194538959619:45389596:G:Ars7254892AIntronicNECTIN2-0.0493578782161202
191123120319:11231203:G:Ars72658867APAVsLDLR-0.0490575325126418
155883399315:58833993:G:Ars6078APAVsLIPC0.048017689590445
204454504820:44545048:C:Trs4810479TOthersPLTP0.0442726563865886
61610173636:161017363:G:Ars73596816AIntronicLPA0.0438964142013332
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.0434283055025763
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.042996926635574
165699332416:56993324:C:Ars3764261AOthersCETP-0.0424637686786461
165700659016:57006590:C:Trs7499892TIntronicCETP0.0414791029434238
7730358577:73035857:T:Crs7800944CIntronicMLXIPL0.0388537547747359
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0381229401224542
5557991845:55799184:C:Ars157843AOthers-0.0379466548974116
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.0376005781072057
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0375514472099431
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0367090114252198
5746168435:74616843:T:Crs10474433CIntronic0.0366583232582887
167211400216:72114002:C:Trs217181TIntronicTXNL4B-0.035868502865861
61605576436:160557643:C:Trs2282143TPAVsSLC22A10.0357657046326131
91361493999:136149399:G:Ars507666AIntronicABO0.0312745223993032
61610060776:161006077:C:Trs41272114TPTVsLPA-0.0311743218445051
7259918267:25991826:T:Crs4722551COthersMIR148A0.0306922705683169
194537356519:45373565:G:Ars395908AIntronicNECTIN2-0.0306058141170255
91361492299:136149229:T:Crs505922CIntronicABO0.0299692094185461
6206869966:20686996:C:Ars9368222AIntronicCDKAL1-0.0283028706431935
116157976011:61579760:T:Crs174555CIntronicFADS1, FADS2-0.0281756718107588
155872674415:58726744:G:Crs261334CIntronicALDH1A2, LIPC-0.0271333300464065
155862439615:58624396:T:Crs11637094CIntronicALDH1A2-0.0265126523320246
122047375812:20473758:C:Ars7134375AOthers0.0260618674712788
61610813316:161081331:A:Grs1740428GIntronicLPA0.0256335207958179
116403124111:64031241:C:Trs35169799TPAVsPLCB3-0.0255096540409367
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.0251535668163819
2440994332:44099433:C:Ars4148217APAVsABCG8-0.0251147349542922
165699071616:56990716:C:Ars247617AOthers-0.024949691212225
11098215111:109821511:T:Grs602633GOthersCELSR2, PSRC10.0247385292305049
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.0241691587624236
201784468420:17844684:G:Trs2618566TOthers-0.0240024139079128
177639543017:76395430:C:Trs2292642TPAVsPGS10.0236678114590092
1555211091:55521109:G:Ars693668AIntronicPCSK90.0231016071510162
204453848420:44538484:G:Trs435306TIntronicPLTP-0.0227774782571468
2212883212:21288321:A:Grs562338GOthers0.0221796543745643
6325780526:32578052:G:Ars532098AOthers-0.0221665603445823
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0220559555077565
8199414488:19941448:C:Trs6989064TIntronic0.0215975439025913
186084588418:60845884:T:Crs12454712CIntronicBCL20.0215420417271852
165701609216:57016092:G:Ars5882APAVsCETP0.0212432533232605
11098171921:109817192:A:Grs7528419GUTRCELSR2-0.0212144724165461
122683480412:26834804:T:TACTCrs111626763TACTCPAVsITPR2-0.0206814969581056
6437588736:43758873:G:Ars6905288AOthersVEGFA-0.0204392392409235
1212142486112:121424861:A:Grs7310409GIntronicHNF1A-0.0204118578999099
194538203419:45382034:A:Grs6859GUTRNECTIN2-0.0202064795125835
194920667419:49206674:G:Ars601338APTVsFUT20.0201425292991812
7774235607:77423560:ATCCAGACTGGAATG:Ars866484129APTVsTMEM600.0201312944194708
12303018111:230301811:T:Grs11122450GIntronicGALNT20.0200561509951702
8813818718:81381871:C:Trs7830160TOthers0.0198354153079682
1352270071:35227007:TTGTC:Trs146812843TPTVsGJB40.019827585577712
191121656119:11216561:A:Crs12983082CIntronicLDLR0.0195588458055238
3123931253:12393125:C:Grs1801282GPAVsPPARG0.0192630860922904
7445819867:44581986:T:Crs17725246COthersNPC1L10.0192238442854718
11075735651:107573565:A:Grs2335077GOthers0.0189208220886858
1211188460812:111884608:T:Crs3184504CPAVsSH2B30.0188159433106462
61611085366:161108536:C:Trs6935921TOthers0.0187804901128939
224432472722:44324727:C:Grs738409GPAVsPNPLA30.0186551999857211
22271070352:227107035:A:Grs2972136GOthers-0.0185754290089247
19719497619:7194976:A:Grs4804377GIntronicINSR0.0185324794134485
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC10.0183593496546497
5532763015:53276301:G:Ars1664781AIntronicARL15-0.0183422992951935
122101148012:21011480:T:Grs4149117GPAVsSLCO1B7-0.0183107944035078
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK50.0182896383256129
176644912217:66449122:G:Ars883541APAVsWIPI10.0182789510438287
61610995036:161099503:G:Ars5014650AOthers0.018021635552528
1111651152211:116511522:C:Trs519000TIntronic-0.018008960010936
166792004916:67920049:G:Ars73594554APAVsNRN1L-0.0177672895383985
176420828517:64208285:C:Grs1801690GPAVsAPOH0.0176481760108222
1111676303411:116763034:G:Ars499910AIntronicSIK30.0175804533535673
168153479016:81534790:T:Crs2925979CIntronicCMIP0.0175200459690096
6437655336:43765533:A:Grs1885659GOthers-0.01742783719786
121635767112:16357671:A:Crs3847920CIntronicSLC15A5-0.0173435508040246
116159721211:61597212:C:Trs174570TIntronicFADS2-0.0172404594098104
2440738812:44073881:T:Crs6544713CIntronicABCG8-0.0171115281318878
5729195785:72919578:A:Grs1981810GOthersARHGEF28-0.0170246627840444
7259975367:25997536:A:Grs4719841GOthers-0.0169900354410621
1380063591:38006359:A:Grs2174769GPAVsSNIP1-0.0169500187647305

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 9009 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References